

Introduction to Abstract Mathematics FALL 2013

Assignment 6.1 Due October 11

Exercise 1. Let $A=\left\{n \mid n=m^{2}+m+4\right.$ for some $\left.m \in \mathbb{N}\right\}$ and $B=\{n \mid n \in \mathbb{N}$ and $2 \mid n\}$. Prove that $A \subseteq B$. Does $A=B$?

Exercise 2. Let $S=\left\{\left(m^{2}-n^{2}, 2 m n, m^{2}+n^{2}\right) \mid m, n \in \mathbb{R}\right\}$ and $T=\{(a, b, c) \mid a, b, c \in$ \mathbb{R} and $\left.a^{2}+b^{2}=c^{2}\right\}$. Show that $S \subseteq T$.

Exercise 3. Let X be a set and suppose that $a, b, c, d \in X$. How are a, b, c and d related if $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$? [Note: You'll need to consider the cases $a \neq b$ and $a=b$ separately.]

Exercise 4. Find (with proof!) 10 elements of the set $G=\{p \in \mathbb{N} \mid p$ is an odd prime and $p=$ $x^{2}+y^{2}$ for some $\left.x, y \in \mathbb{Z}\right\}$.

