

Introduction to Abstract Mathematics
Assignment 6.2 FALL 2013

Exercise 1. Prove that if A has n elements, then $\mathcal{P}(A)$ has 2^{n} elements.

Exercise 2. Let X be a set. Show that the union and intersection, as operations on $\mathcal{P}(X)$, are not cancellative. That is, show that the following two statements are both false.
a. For all $A, B, C \in \mathcal{P}(X)$, if $A \cup C=B \cup C$, then $A=B$.
b. For all $A, B, C \in \mathcal{P}(X)$, if $A \cap C=B \cap C$, then $A=B$.

Exercise 3. If A and B are sets, their symmetric difference is defined to be

$$
A \Delta B=A \cup B-A \cap B
$$

Prove or disprove that $A \Delta(B \Delta C)=(A \Delta B) \Delta C$ for all sets A, B and C.

