

Introduction to Abstract Mathematics Fall 2013

Assignment 8.1 Due November 1

Exercise 1. Prove that the following are partial orderings on the sets indicated. Which are total orderings?

- **a.** The relation $D = \{(a, b) | a | b\}$ on \mathbb{N} .
- **b.** The relation $A = \{((x, y), (z, w)) \mid x < z, \text{ or } x = z \text{ and } y \le w\}$ on \mathbb{R}^2 .
- **c.** The relation $C = \{(A, B) | A \subseteq B\}$ on $\mathcal{P}(X)$, where X is any set. [*Remark:* Your answer to the question of totality will depend on the number of elements in X.]

Exercise 2. Let R_1 and R_2 be relations on a set A, i.e. $R_1, R_2 \subseteq A \times A$. Which of the "regularity" properties (reflexivity, symmetry, transitivity, antisymmetry, totality) are retained by $R = R_1 \cap R_2$? That is, if R_1 and R_2 both possess one of these properties (e.g. both are reflexive), is the same true of R? Answer the same questions with \cap replaced by \cup .

Exercise 3. Let $A = \{a, b, c\}, R = \{(a, a), (a, b), (b, c), (c, b)\}.$

- **a.** Find the smallest reflexive relation S on A that contains R.
- **b.** Find the smallest transitive relation S on A that contains R.
- c. Find the smallest symmetric relation S on A that contains R.