Exercise 1. Prove that the following are partial orderings on the sets indicated. Which are total orderings?
a. The relation $D=\{(a, b)|a| b\}$ on \mathbb{N}.
b. The relation $A=\{((x, y),(z, w)) \mid x<z$, or $x=z$ and $y \leq w\}$ on \mathbb{R}^{2}.
c. The relation $C=\{(A, B) \mid A \subseteq B\}$ on $\mathcal{P}(X)$, where X is any set. [Remark: Your answer to the question of totality will depend on the number of elements in X.]

Exercise 2. Let R_{1} and R_{2} be relations on a set A, i.e. $R_{1}, R_{2} \subseteq A \times A$. Which of the "regularity" properties (reflexivity, symmetry, transitivity, antisymmetry, totality) are retained by $R=R_{1} \cap R_{2}$? That is, if R_{1} and R_{2} both possess one of these properties (e.g. both are reflexive), is the same true of R ? Answer the same questions with \cap replaced by \cup.

Exercise 3. Let $A=\{a, b, c\}, R=\{(a, a),(a, b),(b, c),(c, b)\}$.
a. Find the smallest reflexive relation S on A that contains R.
b. Find the smallest transitive relation S on A that contains R.
c. Find the smallest symmetric relation S on A that contains R.

