Introduction to Abstract Mathematics
Assignment 8.2 FALL 2013

Exercise 1. Let R be a partial ordering on a set A, and let $B \subseteq A$.
a. Show that $R_{B}=R \cap(B \times B)$ is a partial ordering on B.
b. If R is a total ordering, is R_{B} also total?

Exercise 2. If R is a partial ordering on a set A, we say A is well-ordered by R if every non-empty $B \subseteq A$ has a least element under R. Show that if A is well-ordered by R, and $C \subseteq A$ is nonempty, then C is well-ordered by R_{C} (see Exercise 1).

Exercise 3. Given $n \in \mathbb{N}$, define $\nu_{2}(n)$ to be the exponent of the largest power of 2 that divides n. So, for example, $\nu_{2}(4)=2, \nu_{2}(15)=0, \nu_{2}(56)=3$. Define the relation \triangleleft on \mathbb{N} by

$$
\triangleleft=\left\{(a, b) \mid\left(\nu_{2}(a)<\nu_{2}(b)\right) \vee\left(\nu_{2}(a)=\nu_{2}(b) \text { and } a \leq b\right)\right\} .
$$

Prove that \triangleleft is a total ordering on \mathbb{N}. ${ }^{1}$

Exercise 4. Let \triangleleft denote the ordering on \mathbb{N} defined in Exercise 3. Let E denote the set of all even natural numbers. Under \triangleleft, determine the set $L(E)$ of lower bounds of E. Find the greatest element of $L(E)$, i.e. the greatest lower bound of E.

[^0]
[^0]: ${ }^{1} \triangleleft$ is known as the Sharkovskii ordering, and is important in the study of discrete dynamical systems.

