

Introduction to Abstract Mathematics Fall 2013

Assignment 8.2 Due November 1

Exercise 1. Let R be a partial ordering on a set A, and let $B \subseteq A$.

a. Show that $R_B = R \cap (B \times B)$ is a partial ordering on B.

b. If R is a total ordering, is R_B also total?

Exercise 2. If R is a partial ordering on a set A, we say A is *well-ordered* by R if every non-empty $B \subseteq A$ has a least element under R. Show that if A is well-ordered by R, and $C \subseteq A$ is nonempty, then C is well-ordered by R_C (see Exercise 1).

Exercise 3. Given $n \in \mathbb{N}$, define $\nu_2(n)$ to be the exponent of the largest power of 2 that divides n. So, for example, $\nu_2(4) = 2$, $\nu_2(15) = 0$, $\nu_2(56) = 3$. Define the relation \triangleleft on \mathbb{N} by

$$\triangleleft = \{(a,b) \mid (\nu_2(a) < \nu_2(b)) \lor (\nu_2(a) = \nu_2(b) \text{ and } a \le b)\}.$$

Prove that \triangleleft is a total ordering on \mathbb{N} .¹

Exercise 4. Let \triangleleft denote the ordering on \mathbb{N} defined in Exercise 3. Let E denote the set of all even natural numbers. Under \triangleleft , determine the set L(E) of lower bounds of E. Find the greatest element of L(E), i.e. the greatest lower bound of E.

 $^{1 \}triangleleft$ is known as the Sharkovskii ordering, and is important in the study of discrete dynamical systems.