

Introduction to Abstract Mathematics FALL 2013

Assignment 8.3 Due November 1

Exercise 1. Define a relation \sim on \mathbb{R} by declaring that $x \sim y$ if and only if $x-y \in \mathbb{Z}$. Is \sim an equivalence relation?

Exercise 2. Define a relation \sim on \mathbb{Z} by declaring that $m \sim n$ if and only if $|m-n| \leq 1$. Is \sim and equivalence relation?

Exercise 3. Define a relation \sim on $\mathbb{R}^{n}-\{(0,0, \ldots, 0)\}$ by declaring that $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sim$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ if and only if there is an $r \in \mathbb{R}-\{0\}$ so that $x_{i}=r y_{i}$ for all $i \in\{1,2, \ldots, n\}$. Show that \sim is an equivalence relation.

