

Introduction to Abstract Mathematics Fall 2013

Assignment 9.1 Due November 8

Exercise 1. Let $m \in \mathbb{N}$. Show that, under congruence modulo m on \mathbb{Z} , the equivalence classes $[0], [1], [2], \ldots, [m-1]$ are all distinct, and that every $n \in \mathbb{Z}$ belongs to one of them.

Exercise 2. Let $a, b \in \mathbb{Z}$ and set d = gcd(a, b). Write a = a'd and b = b'd for some $a', b' \in \mathbb{Z}$. Prove that if $\text{gcd}(a, b) \neq 0$, then gcd(a', b') = 1. [Suggestion: Use the "gcd as linear combination" theorem.]

Exercise 3. Let ~ be the equivalence relation on $\mathbb{Z} \times \mathbb{N}$ defined by: $(p,q) \sim (r,s)$ if and only if ps - qr = 0.

- **a.** Show that for any $k \in \mathbb{N}$ and $(p,q) \in \mathbb{Z} \times \mathbb{N}$, $(p,q) \sim (kp,kq)$.
- **b.** Show that if $(p,q), (r,s) \in \mathbb{Z} \times \mathbb{N}, (p,q) \sim (r,s)$, and gcd(p,q) = gcd(r,s) = 1, then (p,q) = (r,s).
- **c.** Show that each equivalence class $[(p,q)] \in (\mathbb{Z} \times \mathbb{N})/\sim$ contains *exactly one* element (s,t) with gcd(s,t) = 1.