Exercise 1. Let $m \in \mathbb{N}$. Show that, under congruence modulo m on \mathbb{Z}, the equivalence classes [0], [1], [2], $\ldots,[m-1]$ are all distinct, and that every $n \in \mathbb{Z}$ belongs to one of them.

Exercise 2. Let $a, b \in \mathbb{Z}$ and set $d=\operatorname{gcd}(a, b)$. Write $a=a^{\prime} d$ and $b=b^{\prime} d$ for some $a^{\prime}, b^{\prime} \in \mathbb{Z}$. Prove that if $\operatorname{gcd}(a, b) \neq 0$, then $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$. [Suggestion: Use the "gcd as linear combination" theorem.]

Exercise 3. Let \sim be the equivalence relation on $\mathbb{Z} \times \mathbb{N}$ defined by: $(p, q) \sim(r, s)$ if and only if $p s-q r=0$.
a. Show that for any $k \in \mathbb{N}$ and $(p, q) \in \mathbb{Z} \times \mathbb{N},(p, q) \sim(k p, k q)$.
b. Show that if $(p, q),(r, s) \in \mathbb{Z} \times \mathbb{N},(p, q) \sim(r, s)$, and $\operatorname{gcd}(p, q)=\operatorname{gcd}(r, s)=1$, then $(p, q)=(r, s)$.
c. Show that each equivalence class $[(p, q)] \in(\mathbb{Z} \times \mathbb{N}) / \sim$ contains exactly one element (s, t) with $\operatorname{gcd}(s, t)=1$.

