

Introduction to Abstract Mathematics Fall 2013

Assignment 9.2 Due November 8

Exercise 1. Given $x \in \mathbb{R}$, we define $\lfloor x \rfloor$ to be the greatest integer less than or equal to x, i.e. $\lfloor x \rfloor = n \in \mathbb{Z}$ if and only if $n \leq x < n+1$. $\lfloor x \rfloor$ is sometimes called the *floor function*. Let \sim be the equivalence relation of Exercise 8.3.1.

- **a.** Show that for any $x \in \mathbb{R}$, $x \sim (x \lfloor x \rfloor)$.
- **b.** Use part **a** to show that $\mathbb{R}/\sim = \{[y] \mid y \in [0, 1)\}$, and that these classes are all distinct. Since [0] = [1], this shows that (in a sense we will not make more precise) \mathbb{R}/\sim is actually a "circle."

Exercise 2. Let ~ be the equivalence relation on \mathbb{R}^n of Exercise 8.3.3. We define *n*-dimensional (real) projective space to be $\mathbb{P}^n = \mathbb{R}^{n+1}/\sim$. Show that

$$\mathbb{P}^1 = \{ [(x,1)] \mid x \in \mathbb{R} \} \cup \{ [(1,0)] \},\$$

and that each of these classes is distinct. This shows that (in a sense we will not make more precise) \mathbb{P}^1 is simply \mathbb{R} together with an additional "point at infinity."