Exercise 1. Given $x \in \mathbb{R}$, we define $\lfloor x\rfloor$ to be the greatest integer less than or equal to x, i.e. $\lfloor x\rfloor=n \in \mathbb{Z}$ if and only if $n \leq x<n+1$. $\lfloor x\rfloor$ is sometimes called the floor function. Let \sim be the equivalence relation of Exercise 8.3.1.
a. Show that for any $x \in \mathbb{R}, x \sim(x-\lfloor x\rfloor)$.
b. Use part a to show that $\mathbb{R} / \sim=\{[y] \mid y \in[0,1)\}$, and that these classes are all distinct. Since $[0]=[1]$, this shows that (in a sense we will not make more precise) \mathbb{R} / \sim is actually a "circle."

Exercise 2. Let \sim be the equivalence relation on \mathbb{R}^{n} of Exercise 8.3.3. We define n dimensional (real) projective space to be $\mathbb{P}^{n}=\mathbb{R}^{n+1} / \sim$. Show that

$$
\mathbb{P}^{1}=\{[(x, 1)] \mid x \in \mathbb{R}\} \cup\{[(1,0)]\}
$$

and that each of these classes is distinct. This shows that (in a sense we will not make more precise) \mathbb{P}^{1} is simply \mathbb{R} together with an additional "point at infinity."

