Calculus I
Exam 3
Fall 2016
Practice Problems

Exercise 1. A fence 8 ft tall runs parallel to a tall building at a distance of 4 ft from the building. What is the length of the shortest ladder that will reach from the ground over the fence to the wall of the building?

Exercise 2. A box with a square base and open top is to be made using exactly $1200 \mathrm{~cm}^{2}$ of material. What is the largest possible volume of such a box?

Exercise 3. A driver involved in an accident claims he was going only $25 \mathrm{mi} / \mathrm{h}$. When investigators tested his car, they found that the maximum deceleration its brakes could provide was $15 \mathrm{ft} / \mathrm{s}^{2}$. Given that the skid marks left by the car at the scene of the accident were 210 ft long, is the driver telling the truth?

Exercise 4. For the function $f(x)$, whose graph is shown below, define

$$
g(x)=\int_{0}^{x} f(t) d t .
$$

a. At what values of x do the local maximum and minimum values of g occur?
b. Find the absolute maximum and minimum values of g on the interval $[0,7]$.
c. Find the intervals on which g is concave up and concave down.
d. Carefully sketch the graph of g.

Exercise 5. Evaluate the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i \sqrt{1+i^{2} / n^{2}}}{n^{2}}
$$

[Hint: Express the limit as a definite integral.]

Exercise 6. If f is a continuous function such that

$$
\int_{0}^{x} f(t) d t=x e^{2 x}+\int_{0}^{x} e^{-t} f(t) d t
$$

for all x, find an explicit formula for $f(x)$. [Hint: Apply the Fundamental Theorem of Calculus to get rid of the integrals.]

Exercise 7. Evaluate the integral.
a. $\int_{1}^{9} \frac{\sqrt{u}-2 u^{2}}{u} d u$
b. $\int_{0}^{1} \sin (3 \pi t) d t$
c. $\int \frac{x^{2}}{\sqrt{x-3}} d x$
d. $\int_{1}^{10} \frac{x}{x^{2}-4} d x$
e. $\int \frac{\cos (\ln x)-\sin (\ln x)}{x} d x$
f. $\int_{0}^{\pi / 4}(1+\tan \theta)^{3} \sec ^{2} \theta d \theta$
g. $\int_{0}^{1} \frac{e^{z}+1}{e^{z}+z} d z$
h. $\int_{0}^{4}|\sqrt{x}-1| d x$

Exercise 8. Find the area of the region bounded by the given curves.
a. $y=\sin (\pi x / 2), y=x^{2}-2 x$
b. $y=\sqrt[n]{x}, y=2 x-1, y=0(n>1)$
c. $y=x^{2}-4, y=x^{3}-4 x$

Exercise 9. Find the volume of the solid whose base is the region enclosed by the parabola $y=1-x^{2}$ and the x-axis, and whose cross-sections perpendicular to the y-axis are semicircles.

Exercise 10. Find the volume of the "cap" of a sphere with radius r and height h (see the diagram below).

