
Calculus I Exercise 4.7.67
Fall 2017 Solution

Exercise 1. Consider the tangent line to the ellipse

x2

a2
+
y2

b2
= 1 (1)

at a point P = (p, q) in the first quadrant.

a. Find the x and y intercepts of the tangent line at P .

First we construct the tangent line. Since we already have the coordinates of P , we
only need to find the derivative at P . We implicitly differentiate (1):
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Therefore the tangent line has point-slope equation
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To obtain the x-intercept we set y = 0 and solve for x:
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where we have used the fact that since P lies on the ellipse, its coordinates must satisfy
(1). Either by setting x = 0 in the equation for the tangent line and solving for y (as
above), or arguing by symmetry, we likewise find that the y-intercept is
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b. Find the minimum length of the portion tangent line cut off by the coordinate axes.

To simplify things, we parametrize the points P on the ellipse by the unit circle, setting
p = a cos θ, q = b sin θ with 0 < θ < π/2. Using the intercepts found in part a, the



Pythagorean Theorem tells us that the length, L, of the portion of the tangent line in
the first quadrant satisfies
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Differentiating we obtain
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Since a, b > 0, cos θ, sin θ are positive on (0, π/2), and tan2 θ is increasing there as well,
we find that there is a single critical point when tan2 θ = b/a, that dL

dθ
is negative to

its left, and is positive to its right. Hence the global minimum value of L occurs when
tan2 θ = b/a.

To evaluate L, we represent the relationship tan2 θ = b/a graphically with the right
triangle shown below.

From it we deduce that
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and hence

L2 = a2 sec2 θ + b2 csc2 θ = a(a+ b) + b(a+ b) = (a+ b)2 ⇒ L = a+ b .

c. Minimize the area of the triangle formed by the tangent line and the coordinate axes.

By part a, the (right) triangle formed by the tangent line and the coordinate axes has
width a2/p and height b2/q, so that its area is
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The quantity m = q/p is the slope of the line segment between P and the origin. Any
(non-vertical) line through the origin is totally determined by its slope, and if that
slope is positive it will strike the ellipse at a unique point point P in the first quadrant.



In other words, we may replace P by m = q/p throughout the problem and will still
find the same maximum value of A. Making this substitution we find that we need to
optimize
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Since a, b,m > 0, m = b/a is the only critical point in the domain of A, and we see that
dA
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is negative to its left, and positive to its right. Hence the absolute minimum of A
occurs when m = b/a, and this minimum value is
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