Calculus I

FALL 2017

Applied Optimization Examples

Example 1. The top and bottom margins of a poster are each 6 cm and the side margins are 4 cm . If the area of the printed material on the poster is fixed at $384 \mathrm{~cm}^{2}$, find the dimensions of the poster with the smallest area.

Let x and y denote the dimensions of the printed portion of the poster, so that

$$
x y=384 \Rightarrow y=\frac{384}{x}
$$

and the overall area is given by

$$
A=(x+8)(y+12)=(x+8)\left(\frac{384}{x}+12\right)=384+\frac{3072}{x}+12 x+96=12 x+\frac{3072}{x}+480
$$

with domain $0<x<\infty$.
The critical numbers of A are given by

$$
0=A^{\prime}=12-\frac{3072}{x^{2}} \Longleftrightarrow x^{2}=256 \Longleftrightarrow x= \pm 16 .
$$

We may discard $x=-16$ since it isn't in our domain, leaving us with the single critical number $x=16$. Looking at the sign of A^{\prime} we have

Since $A^{\prime}>0$ to the right of $x=16$ and negative to the left, A must have an absolute minimum value at $x=16$. This corresponds to $y=24$ for overall dimensions

$$
24 \mathrm{~cm} \times 36 \mathrm{~cm} \text {. }
$$

Example 2. A cone with height h is inscribed in a larger cone with height H so that its vertex is at the center of the base of the larger cone. Show that the inner cone has maximum volume when $h=\frac{1}{3} H$.

Taking a vertical cross-section through the vertices of both cones yields the following diagram.

The top-most triangle is similar to the large triangle, so that

$$
\frac{H-h}{r}=\frac{H}{R} \Rightarrow r=\frac{R}{H}(H-h) .
$$

Hence the volume of the inscribed cone is

$$
V=\pi r^{2} h=\frac{\pi R^{2}}{H^{2}}(H-h)^{2} h
$$

Here H and R are fixed positive constants and $0 \leq h \leq H$. So we may use the closed interval method.

To locate the critical numbers we set

$$
\begin{aligned}
0 & =\frac{d V}{d h} \\
& =\frac{\pi R^{2}}{H^{2}}\left(-2(H-h) h+(H-h)^{2}\right) \\
& =\frac{\pi R^{2}}{H^{2}}(H-h)(-2 h+H-h) \\
& =\frac{\pi R^{2}}{H^{2}}(H-h)(H-3 h) \\
& \Rightarrow h=H / 3, H .
\end{aligned}
$$

Since $V(0)=V(H)=0$, the maximum value must occur when $h=H / 3$:

$$
V(H / 3)=\frac{4 \pi R^{2} H}{27}
$$

which is just less than half the volume of the larger cone.

Example 3. At which points on the curve $y=1+40 x^{3}-3 x^{5}$ does the tangent line have the largest slope?

Since the slope of the tangent line is just the derivative, we need to maximize $y^{\prime}=$ $120 x^{2}-15 x^{4}=f(x)$ on the entire real line $(-\infty, \infty)$. However, since f is even, we need only consider $[0, \infty)$. Now according to Fermat's Theorem, the absolute maximum (if it exists) occurs somewhere $f^{\prime}(x)=0$, i.e. where

$$
f^{\prime}(x)=240 x-60 x^{3}=60 x\left(4-x^{2}\right)=0 \Longleftrightarrow x=0, \pm 2 \Rightarrow x=0,2
$$

It is easy to see that the sign of f^{\prime} is given by

Since $f^{\prime}(x)$ is positive for $x<2$ and negative for $x>2, f(2)$ must be the absolute maximum value of f on $[0, \infty)$.

By the symmetry of even functions, the same maximum value occurs at $x=-2$. This and $x=2$ give the points

$$
(2,225) \text { and }(-2,-223)
$$

on the original curve.

Example 4. The upper right-hand corner of a piece of paper, 12 in . by 8 in ., as in the figure, is folded over to the bottom edge. How would you fold it so as to minimize the length of the fold? In other words, how would you choose x to minimize y ?

Introduce the lengths ℓ and L as shown below.

There are now three right triangles in the diagram. The Pythagorean Theorem applied to the bottom-right triangle yields

$$
x^{2}=\ell^{2}+(8-x)^{2}=\ell^{2}+64-16 x+x^{2} \Rightarrow \ell^{2}=16(x-4) .
$$

When applied to the top-left triangle, then Pythagorean Theorem gives

$$
L^{2}=(L-\ell)^{2}+8^{2}=L^{2}-2 L \ell+\ell^{2}+64 \Rightarrow L=\frac{\ell}{2}+\frac{32}{\ell}=\frac{\ell^{2}+64}{2 \ell}
$$

Finally, applying the Pythagorean Theorem to the "folded" triangle, and using the results just obtained, we have

$$
y^{2}=x^{2}+L^{2}=x^{2}+\frac{\left(\ell^{2}+64\right)^{2}}{4 \ell^{2}}=x^{2}+\frac{(16 x)^{2}}{64(x-4)}=x^{2}+\frac{4 x^{2}}{x-4} .
$$

In order for the top-right corner of the paper to fold down to touch the bottom edge and form a triangle, we must have $x>4$, and certainly x can't exceed the height of the paper, so $x<8$. Hence the domain of y is

$$
4<x<8
$$

an open interval.
Now to find the critical number of y. We could solve for y above but instead we simply
implicitly differentiate, obtaining

$$
\begin{aligned}
2 y \frac{d y}{d x} & =2 x+\frac{(x-4) \cdot 8 x-4 x^{2}}{(x-4)^{2}} \\
& =2 x+\frac{4 x^{2}-32 x}{(x-4)^{2}} \\
& =2 x+\frac{4 x(x-8)}{(x-4)^{2}} \\
& =2 x\left(1+\frac{2(x-8)}{(x-4)^{2}}\right) \\
& =2 x\left(\frac{(x-4)^{2}+2(x-8)}{(x-4)^{2}}\right) \\
& =2 x\left(\frac{x^{2}-6 x}{(x-4)^{2}}\right) \\
& =2 x^{2}\left(\frac{x-6}{(x-4)^{2}}\right) .
\end{aligned}
$$

Hence, since $y>0$

$$
\frac{d y}{d x}=\frac{x^{2}}{y}\left(\frac{x-6}{(x-4)^{2}}\right)
$$

This is only zero in our domain when $x=6$, and because every factor other than $x-6$ is always positive, $d y / d x$ is positive when $x>6$ and negative when $x<6$. That is, we have the following sign diagram for $d y / d x$.

Hence, since there is only one critical point, the First Derivative Test guarantees that we have an absolute minimum when $x=6$. The corresponding y value is $6 \sqrt{3}$.

