On Bézout's Lemma

R. C. Daileda

August 29, 2017

The goal of this note is to provide a constructive proof of the following well-known result.
Lemma 1 (Bézout). Let $a, b \in \mathbb{Z}$. There exist $r, s \in \mathbb{Z}$ so that

$$
\operatorname{gcd}(a, b)=r a+s b
$$

Proof. We use the Euclidean algorithm to obtain

$$
\begin{array}{cc}
b=q_{1} a+r_{1}, & 0<r_{1}<|a|, \\
a=q_{2} r_{1}+r_{2}, & 0<r_{2}<r_{1}, \\
r_{1}=q_{3} r_{2}+r_{3}, & 0<r_{3}<r_{2}, \\
\vdots & \vdots \\
r_{j-1}=q_{j+1} r_{j}+r_{j+1}, & 0<r_{j+1}<r_{j} \\
\vdots & \vdots \\
r_{N-2}=q_{N} r_{N-1}+r_{N}, & 0<r_{N}<r_{N-1}, \\
r_{N-1}=q_{N+1} r_{N} & \left(\text { i.e. } r_{N+1}=0\right),
\end{array}
$$

in which $r_{N}=\operatorname{gcd}(a, b) .{ }^{1}$ For $0 \leq j \leq N$ define

$$
\mathbf{x}_{j}=\binom{r_{j-1}}{r_{j}}
$$

where we set $r_{-1}=b, r_{0}=a$. If we write the general relation $r_{j-1}=q_{j+1} r_{j}+r_{j+1}$ as

$$
r_{j+1}=r_{j-1}-q_{j+1} r_{j}
$$

we find that we have the recursive relationship

$$
\mathbf{x}_{j+1}=\left(\begin{array}{cc}
0 & 1 \\
1 & -q_{j+1}
\end{array}\right) \mathbf{x}_{j}, \quad 0 \leq j \leq N-1
$$

Setting

$$
A_{j}=\left(\begin{array}{cc}
0 & 1 \\
1 & -q_{j}
\end{array}\right)
$$

for $1 \leq j \leq N$ we find that

$$
\begin{equation*}
\mathbf{x}_{N}=A_{N} \mathbf{x}_{N-1}=A_{N} A_{N-1} \mathbf{x}_{N-2}=\cdots=A_{N} A_{N-1} \cdots A_{1} \mathbf{x}_{0} \tag{1}
\end{equation*}
$$

Write

$$
A_{N} A_{N-1} \cdots A_{1}=\left(\begin{array}{cc}
* & * \tag{2}\\
s & r
\end{array}\right)
$$

Since $r_{-1}=b, r_{0}=a$ and $r_{N}=\operatorname{gcd}(a, b),(1)$ yields

$$
\binom{*}{\operatorname{gcd}(a, b)}=\left(\begin{array}{cc}
* & * \\
s & r
\end{array}\right)\binom{b}{a}=\binom{*}{r a+s b}
$$

which establishes what we wanted to prove.

[^0]
Remarks

- The constructive nature of the preceding proof of Bézout's Lemma lies in equation (2), expressing the coefficients r and s in terms of the quotients q_{j} occurring in the Euclidean algorithm. As these are provided by the division algorithm, which in turn has a constructive proof, we see that we have provided a means of computing r and s explicitly.
- The r and s whose existence is assured by Bézout's Lemma are not unique. Indeed, notice that

$$
r a+s b=(r-k b) a+(s+k a) b
$$

for any $k \in \mathbb{Z}$.

- The proof we have given here is computationally efficient in that it requires a minimal amount of variable storage to be implemented by a machine. Indeed, by evaluating the product $A_{N} A_{N-1} \cdots A_{1}$ of equation (2) from right to left, one finds that it is only necessary to keep track of one stage of the Euclidian algorithm and the corresponding partial product of the A_{j} at a time.
- In the context of modular arithmetic the coefficients appearing in Bézout's Lemma (specifically r) are particularly important. For when $\operatorname{gcd}(a, b)=1$ we see that $r a \equiv 1(\bmod b)$, i.e. $r \equiv a^{-1}(\bmod b)$.

[^0]: ${ }^{1}$ We have assumed $a \nmid b$. In the case that $a \mid b$ we have $\operatorname{gcd}(a, b)=|a|$ and we can take $r= \pm 1, s=0$ to prove the Lemma.

