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Let F be a field and let A ∈ Mn(F ). The group GLn(F ) acts on Mn(F ) by conjugation. Slighty abusing
terminology and symbolism, we will call the orbit of A under this action its conjugacy class and will denote
it by Cl(A):

Cl(A) = {XAX−1 |X ∈ GLn(F )}.

The goal of this note is to study |ClA| when n = 2, i.e. the number of GL2(F ) conjugates of A ∈ M2(F ).
Our main result is the following.

Theorem 1. If F is an infinite field and A ∈ M2(F ) is not a scalar matrix, then Cl(A) is infinite.

Theorems 2 through 5 allow one to compute |Cl(A)| explicitly when F is finite.
According to the Orbit-Stabilizer Theorem, there is a bijective correspondence between Cl(A) and the

coset space of the stablizer

C(A) = {X ∈ GLn(F ) |XAX−1 = A} = {X ∈ GLn(F ) |AX = XA},

(the centralizer of A) given by X ·C(A) 7→ XAX−1. In particular, |Cl(A)| = [GLn(F ) : C(A)], so a natural
place to start our work is with the study of C(A).

Because it will allow us to bring the techniques of linear algebra to bear on the problem, we consider the
larger set

C ′(A) = {X ∈ Mn(F ) |AX = XA}.

Clearly C(A) = C ′(A)∩GLn(F ). We define the commutator of two n×n matrices to be [A,B] = AB−BA.
The map X 7→ [A,X] is an F -vector space endomorphism of Mn(F ) whose kernel is precisely C ′(A). It can
be studied by analyzing the null space of the matrix for X 7→ [A,X] relative to some ordered basis. We
choose to use the basis {Eij}, i, j ∈ {1, 2, . . . , n}, where Eij ’s only nonzero entry is a 1 in the (i, j) position,
declaring that Eij < E`m if i = ` and j < m or i < `. Relative to this basis, it is not difficult to show that
the matrix of X 7→ [A,X] is

T = A⊗ I − I ⊗A, (1)

⊗ denoting the Kronecker product of matrices.
We now set n = 2 and A =

(
a b
c d

)
. Relative to the ordered basis

E1,1 =

(
1 0
0 0

)
, E1,2 =

(
0 1
0 0

)
, E2,1 =

(
0 0
1 0

)
, E2,2 =

(
0 0
0 1

)
, (2)

by either using (1) or computing directly, it is not difficult to see that the matrix for X 7→ [A,X] in this
case is

T =


0 −c b 0
−b a− d 0 b
c 0 d− a −c
0 c −b 0

 .

C ′(A) consists precisely of those matrices whose coordinate vectors relative to (2) lie in the null space of T ,
and the dimension of that space is dim nullT = 4− rankT .

Because (1, 0, 0, 1)T ∈ nullT , we immediately conclude that all scalar matrices
(
λ
λ

)
commute with A.

Of course, this observation can be made directly, but it is interesting to see it arise naturally from our
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considerations. The real question is what else, if anything, commutes with A? Notice that any polynomial
in A will commute with A so that F [A] is a subspace of C ′(A).

If (b, c) 6= (0, 0), then A and I are linearly independent, which means that the minimal polynomial
of A must have degree 2, and hence dimF [A] = 2. Similarly, if b = c = 0 and a 6= d, then A has two
distinct eigenvalues and its minimal polynomial again has degree 2, implying that dimF [A] = 2. But in
both cases at least two of the first three columns of T are linearly independent, so that rankT ≥ 2 and
dimC ′(A) = dimA ≤ 2. We conclude that dimC ′(A) = 2 and C ′(A) = F [A] = {λI + µA |λ, µ ∈ F}.

At this point a remark is in order. In the latter case, the elements of F [A] take the form(
λ+ µa

λ+ µd

)
.

It is not difficult to show that since a 6= d, the diagonal entries can take on any values in F , so that we have
the alternate, and more explicit, description

C ′(A) = F [A] =

{(
λ

µ

) ∣∣∣∣ λ, µ ∈ F} .
The remaining case occurs when b = c = 0 and a = d, i.e. when A is a scalar matrix. Since scalar

matrices commute with all others (or since T = 0 in this case), we conclude that C ′(A) = M2(F ). Table 1
summarizes our findings.

Conditions C′(A)

(b, c) = (0, 0), a = d M2(F )

(b, c) = (0, 0), a 6= d F [A] =

{(
λ

µ

) ∣∣∣∣ λ, µ ∈ F}

(b, c) 6= (0, 0) F [A] = {λI + µA |λ, µ ∈ F}

Table 1: The centralizer of A =
(
a b
c d

)
in M2(F )

We now return to our original question, that of determining |Cl(A)| = [GL2(F ) : C(A)]. If A is scalar
we clearly have |Cl(A)| = 1. If A is diagonal but nonscalar, then according to the results above

C(A) = C ′(A) ∩GL2(F ) =

{(
λ

µ

) ∣∣∣∣ λ, µ ∈ F×}
and we need to determine the order of the coset space GL2(F )/{

(
λ
µ

)
}.

Theorem 2. There is a bijection between GL2(F )/{
(
λ
µ

)
} and N = {(P,Q) ∈ P1(F )× P1(F ) |P 6= Q}.

Proof. We define

Φ : GL2(F )/{
(
λ
µ

)
} → N

(a b) · {
(
λ
µ

)
} 7→ ([a], [b]),

where a and b are column vectors and [ · ] denotes the projective equivalence class of a vector. To verify that
Φ is well-defined we need to check two things: that it does not depend on the coset representative chosen
and that its image actually lies in N . The latter is trivial. If (a b) is invertible, a and b must be linearly
independent, i.e. nonmultiples. This is equivalent to [a] 6= [b]. Now suppose that (a b) and (c d) belong to
the same coset of {

(
λ
µ

)
}. Then

(c d) = (a b)

(
λ

µ

)
= (λa µb)
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so that [c] = [a] and [d] = [b], as needed.
If the cosets of (a b) and (c d) have the same image under Φ, then ([a], [b]) = ([c], [d]), and so there

exist λ, µ ∈ F× so that λa = c and µb = d. That is, (a b)
(
λ
µ

)
= (c d), and the cosets of (a b) and

(c d) are the same. Hence Φ is injective.
Finally, given any pair of projective points (P,Q) with P 6= Q, choose representative vectors so that

P = [a] and Q = [b]. Because P 6= Q, a and b are not multiples of one another. Hence (a b) is invertible
and its coset furnishes the preimage of (P,Q) under Φ.

Corollary 1. If A is a 2× 2 nonscalar diagonal matrix over an infinite field, its GL2(F ) conjugacy class is
infinite.

Remark. If F is finite and A is a nonscalar diagonal matrix, it clearly would not be difficult to use Theorem
2 to determine the size of the conjugacy class of A explicitly.

Now suppose that A is not diagonal. An element λI + µA ∈ F [A] = C ′(A) is invertible precisely when

det(λI + µA) = λ2 + µλTrA+ µ2 detA 6= 0.

If µ = 0, this is equivalent to λ 6= 0, but if µ 6= 0, this can be rewritten as

µ2fA(−λ/µ) 6= 0 ⇔ fA(−λ/µ) 6= 0,

where fA is the characteristic polynomial of A. This occurs precisely when −λ/µ is not an eigenvalue of A.
If the eigenvalues of A do not belong to F (they simultaneously do or do not), this condition is automatic
and so

C(A) = {λI + µA | (λ, µ) ∈ F 2 \ {(0, 0)}}.

Otherwise, denoting the eigenvalues by r1, r2 ∈ F (which may be the same), this means

(λ, µ) 6∈ F · (−r1, 1)︸ ︷︷ ︸
L1

∪F · (−r2, 1)︸ ︷︷ ︸
L2

.

Let
P (r1, r2) =

{
(λ, µ) | (λ, µ) ∈ F 2 \ L1 ∪ L2

}
.

We have just proven that
C(A) = {λI + µA | (λ, µ) ∈ P (r1, r2)}

in this case. Table 2 summarizes our computations of the centralizer of A.
We now explicitly compute the coset X · C(A) for an arbitrary X = ( x y

z w ) ∈ GL2(F ). Without loss of
generality, assume c 6= 0. Given (λ, µ) ∈ F 2, we have

X(λI + µA) =

(
X

(
λ+ µa
µc

)
X

(
µb

λ+ µd

))
=

(
X

(
1 a
0 c

)(
λ
µ

)
X

(
0 b
1 d

)(
λ
µ

))
.

(3)

Let ( rs ) = X ( 1 a
0 c )

(
λ
µ

)
so that

(
λ
µ

)
= 1

c

(
c −a
0 1

)
X−1 ( rs ) and the right-hand side of (3) becomes(

r
s

1

c
X

(
0 b
c d− a

)
X−1

(
r
s

))
=

(
r
s

1

c
X(A− aI)X−1

(
r
s

))
=

(
r
s

1

c

(
XAX−1 − aI

)( r
s

))
.

(4)

When the eigenvalues of A are outside of F , (λ, µ) is free to take on any nonzero value. Since X ( 1 a
0 c ) is

invertible, the same is true of (r, s). Consequently we obtain the following result.
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Conditions C(A)

(b, c) = (0, 0)

a = d
GL2(F )

(b, c) = (0, 0)

a 6= d

{(
λ

µ

) ∣∣∣∣ λ, µ ∈ F×}

(b, c) 6= (0, 0)

r1,r2 6∈ F
{
λI + µA | (λ, µ) ∈ F 2 \ {(0, 0)}

}

(b, c) 6= (0, 0)

r1,r2 ∈ F
{λI + µA | (λ, µ) ∈ P (r1, r2)}

Table 2: The centralizer of A =
(
a b
c d

)
in GL2(F )

Lemma 1. If A =
(
a b
c d

)
∈ M2(F ), (b, c) 6= (0, 0) and the eigenvalues of A do not belong to F , then for any

X ∈ GL2(F )

X · C(A) =

{(
r
s

1

c

(
XAX−1 − aI

)( r
s

)) ∣∣∣∣ (r, s) ∈ F 2 \ {(0, 0)}
}
.

We can now parametrize the coset space GL2(F )/C(A) in this case.

Theorem 3. If A =
(
a b
c d

)
∈ M2(F ), (b, c) 6= (0, 0) and the eigenvalues of A do not belong to F , then there

is a bijection GL2(F )/C(A)→ F × F×.

Proof. According to Lemma 1, each coset X · C(A) contains a unique upper triangular element of the form
( 1 u
0 v ) with (u, v) ∈ F ×F×. We map X ·C(A) to (u, v). This is injective since distinct cosets are disjoint. It

is surjective since given (u, v) ∈ F ×F×, the matrix Y = ( 1 u
0 v ) belongs to the coset Y ·C(A), which therefore

maps to (u, v).

Corollary 2. If A =
(
a b
c d

)
∈ M2(F ), (b, c) 6= (0, 0), the eigenvalues of A do not belong to F , and F is

infinite, then the conjugacy class Cl(A) is infinite.

In the case that the eigenvalues of A do belong to F , for i = 1, 2 let

si(X) = X

(
1 a
0 c

)(
−ri
1

)
= X

(
a− ri
c

)
. (5)

Then (r, s)T of (4) must belong to P (s1(X), s2(X)). This yields the next result.

Lemma 2. If A =
(
a b
c d

)
∈ M2(F ), (b, c) 6= (0, 0) and the eigenvalues of A belong to F , then for any

X ∈ GL2(F )

X · C(A) =

{(
r
s

1

c

(
XAX−1 − aI

)( r
s

)) ∣∣∣∣ ( r
s

)
∈ P (s1(X), s2(X))

}
.

We can now begin to parametrize the coset space GL2(F )/C(A) when the eigenvalues of A belong to F .

Theorem 4. Suppose A =
(
a b
c d

)
∈ M2(F ), (b, c) 6= (0, 0) and the eigenvalues of A are distinct and belong

to F . Then there is a bijection GL2(F )/C(A)→ {(P,Q) ∈ P1(F )× P1(F ) |P 6= Q}.

4



Proof. Again we assume c 6= 0, without loss of generality. We map X · C(A) to ([s1(X)], [s2(X)]). Because
we have assumed r1 6= r2, the definition of si shows that [s1(X)] 6= [s2(X)], so this is well-defined. For the
same reason, it is always possible to choose X ∈ GL2(F ) so that the si(X) take on any specified values.
Hence this map is surjective.

Proving injectivity requires the most work. Suppose that ([s1(X)], [s2(X)]) = ([s1(Y )], [s2(Y )]) for some
X,Y ∈ GL2(F ). Using the definition (5), we find that this means the vectors (a − ri, c)T , i = 1, 2, are
eigenvectors of Y −1X. However, since rankA− riI = 1 and c 6= 0, these vectors span the ri-eigenspaces of
A as well. It follows that the matrix (

a− r1 a− r2
c c

)
diagonalizes both A and Y −1X. As diagonal matrices commute, this can easily be shown to imply that A
and Y −1X commute, i.e. Y −1X ∈ C(A). Thus X ·C(A) = Y ·C(A), which is what we needed to show.

Corollary 3. If A =
(
a b
c d

)
∈ M2(F ), (b, c) 6= (0, 0), the eigenvalues of A are distinct and belong to F , and

F is infinite, then the conjugacy class Cl(A) is infinite.

The final case, when A satisfies (b, c) 6= (0, 0) and has only a single eigenvalue r in F , is the most subtle.
The Theory of Jordan Canonical Forms, there is a matrix Z ∈ GL2(F ) so that

ZAZ−1 =

(
r 1
0 r

)
.

Because the map X → ZXZ−1 is an automorphism of GL2(F ) we may therefore assume A = ( r 1
0 r ). In this

case, elements of C(A) have the form

λI + µA = λI + µrI + µ

(
0 1
0 0

)
= (λ+ µr)I + µ

(
0 1
0 0

)
.

The restriction (λ, µ) ∈ P (r, r) means that µ is free to take on any value while λ+µr 6= 0. We conclude that

C(A) =

{(
α β
0 α

) ∣∣∣∣ α, β ∈ F, α 6= 0

}
. (6)

We now make an important observation.

Lemma 3. If X ∈ GL2(F ) is upper triangular, so is every matrix in X ·C(A). Otherwise, X ·C(A) contains
no upper triangular matrices.

Proof. Since the set of upper triangular matrices in GL2(F ) is a subgroup, the first statement follows in
light of (6). As for the second, if X = ( ∗ ∗x ∗ ) with x 6= 0, then

X

(
α β
0 α

)
=

(
∗ ∗
αx ∗

)
,

and αx 6= 0 since α 6= 0.

Now let X = ( x y
z w ) ∈ GL2(F ) and suppose first that z 6= 0. Then there is an α ∈ F× so that αz = 1.

Let β = −α2w. Then

X

(
α β
0 α

)
=

(
u v
1 0

)
(7)

for some u, v ∈ F , v ∈ F×. We claim that ( u v1 0 ) is the only element of the coset X · C(A) of this form.
Indeed, ( p q1 0 ) is in the same coset if and only if(

p q
1 0

)−1(
u v
1 0

)
= −1

q

(
0 −q
−1 p

)(
u v
1 0

)
= −1

q

(
−q 0
p− u −v

)
=

(
1 0

(u− p)/q v/q

)
belongs to C(A). But by (6) this can only happen when u = p and v = q. This proves the next statement.
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Lemma 4. The non-upper-triangular cosets of C(A) are parametrized by the matrices ( u v1 0 ) ∈ GL2(F ).

At last, consider the case when X = ( x 0
z w ) ∈ GL2(F ). Let α = 1/x and β = −α2z. Then X

(
α β
0 α

)
has

the form (
1 0
0 u

)
.

A computation similar to that above shows that no two matrices of this form can belong to the same coset
of C(A), proving our last lemma.

Lemma 5. The upper-triangular cosets of C(A) are parametrized by the matrices ( 1 0
0 u ) ∈ GL2(F ).

Lemmas 4 and 5 immediately imply our penultimate theorem.

Theorem 5. Suppose A =
(
a b
c d

)
∈ M2(F ), (b, c) 6= (0, 0) and that A has a single repeated eigenvalue

belonging to F . Then there is a bijection GL2(F )/C(A)→ F× ∪ F × F×.

Corollary 4. If A =
(
a b
c d

)
∈ M2(F ), (b, c) 6= (0, 0), A has a single repeated eigenvalue belonging to F , and

F is infinite, then the conjugacy class Cl(A) is infinite.

Corollaries 1, 2, 3 and 4 together now finally prove Theorem 1.
As closing commentary, we mention that we used the theory of the Jordan Canonical Form in the final

case only out of desperation. A more elementary approach, along the lines of the other cases, would have
been preferable, if for no other reason than aesthetics. Or we could have worked with canonical forms from
the outset. In the case that A has no eigenvalues in F , there’s no real savings. But when A’s eigenvalues
are distinct and belong to F we are immediately reduced to the case of non-scalar diagonal matrices, which
were handled earlier. One disadvantage to this approach, however, is that we lose the explicit descriptions
of the cosets X · C(A), since these are only obtained for the canonical forms, not the matrices themselves
(as in the final case above).
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