
Last Time Chain Conditions and Factorizations Uniqueness of Factorizations The Division Algorithm Revisited

Factorization in Domains

Ryan C. Daileda

Trinity University

Modern Algebra II

Daileda Factorization



Last Time Chain Conditions and Factorizations Uniqueness of Factorizations The Division Algorithm Revisited

Last Time

Motivated by the Fundamental Theorem of Arithmetic (FTA),
given a domain D and a ∈ D \ (D× ∪ {0}) we decided:

a is irreducible if a = bc with in D implies b ∈ D× or c ∈ D×;

a is prime if a|bc in D implies a|b or a|c (in D).

We also proved a few fundamental results.
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Lemma

Let D be a domain and a ∈ D \ (D× ∪ {0}). Then:
a is prime iff (a) is a prime ideal.

a is irreducible iff (a) is maximal among principal ideals.

Lemma

In a domain, prime implies irreducible.

Theorem

If D is a PID, then prime and irreducible are equivalent notions. In
particular, prime elements generate maximal ideals.
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Corollary

If f ∈ F [x ] is irreducible, then K = F [x ]/(f ) is a field extension of
F containing a root of f , namely α = x + (f ).

Example. x2 + 1 ∈ F3[x ] is irreducible since it has no root in F3.
By the division algorithm, the distinct elements of

K = F3[x ]/(x
2 + 1)

have the form a + bx + (f ) (a, b ∈ F3).Write a + bi for such a
coset.
Since i = x + (f ) is a root of f , it satisfies i2 + 1 = 0 or
i2 = −1.Thus

K = {a + bi |a, b ∈ F3 and i2 = −1 }

is a field extension of F3 with 9 elements containing a root of
x2 + 1.
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The ACC

A sequence
I1 ⊆ I2 ⊆ I3 ⊆ · · · (1)

of ideals in a ring R is called an ascending chain of ideals.

We say the chain (1) stabilizes if there is an n ∈ N so that In = Ik
for all k ≥ n.

Finally, R is said to satisfy the ascending chain condition (ACC) if
every ascending chain of ideals in R stabilizes. In this case we call
R Noetherian.

We will connect ascending chains of ideals to factorizations of ring
elements. First we present an alternate formulation of the
Noetherian property.
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Noetherian iff Ideals are Finitely Generated

Theorem

Let R be a commutative ring with unity. Then R is Noetherian if
and only if every ideal in R has the form

Ra1 + Ra2 + · · ·+ Ran = (a1, a2, . . . , an)

for some n ∈ N and ai ∈ R, i.e. every ideal is finitely generated.

Proof. (⇐) Consider a chain (1) of ideals in R and let
I =

⋃

k∈N Ik , also an ideal in R (HW).

Write I = (a1, a2, . . . , am).

Since each ai must belong to some ideal in the chain, the
right-most of these, In, contains all of the ai , and hence I .
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That is
I ⊆ In ⊆ In+1 ⊆ In+2 ⊆ · · · ⊆ I ,

proving that each of these inclusions is an equality, and that the
chain stabilizes.

Hence R is Noetherian.

(⇒) We prove the contrapositive. Suppose R contains an ideal I
that is not finitely generated.

Since I is not finitely generated we may successively choose a1 ∈ I ,
a2 ∈ I \ (a1), a3 ∈ I \ (a1, a2), a4 ∈ I \ (a1, a2, a3), . . .
This produces a chain of proper containments

(a1) ⊂ (a1, a2) ⊂ (a1, a2, a3) ⊂ (a1, a2, a3, a4) ⊂ · · ·

i.e. a chain of ideals that doesn’t stabilize.

Therefore R is not Noetherian.
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Corollary

Every PID is Noetherian.

Remark. We will primarily be interested in chains of principal
ideals in a domain D. It is therefore worth noting that for
a, b ∈ D \ {0}:

(a) ⊆ (b) ⇐⇒ b|a;
”To contain is to divide.”

(a) = (b) ⇐⇒ a = bc for some c ∈ D×

a and b are associates ;

(a) ⊂ (b) ⇐⇒ a = bc for some c ∈ D \ (D× ∪ {0}).
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Lemma

Let D be a domain. If a ∈ D \ (D× ∪ {0}) is not a product of
irreducibles, then there exists b ∈ D \ (D× ∪ {0}) that is not a
product of irreducibles so that (a) ⊂ (b).

Proof. If a ∈ D \ (D× ∪ {0}) is not a product of irreducibles, then
in particular it is not irreducible.

So we can write a = bc with b, c ∈ D \ (D× ∪ {0}).

If both b and c were products of irreducibles, then so would be
bc = a.

Therefore, without loss of generality, b is not a product of
irreducibles, and since c 6∈ D×, (a) ⊂ (b).
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ACC and Irreducible Factorizations

Theorem

Let D be a domain. If D satisfies the ACC on principal ideals, then
every a ∈ D \ (D× ∪ {0}) is equal to a product of irreducibles.

Proof. Any ascending chain

(a1) ⊂ (a2) ⊂ (a3) ⊂ · · · ⊂ (an), n ≥ 1,

of principal ideals generated by elements that are not products of
irreducibles can always be lenghtened, according to the preceding
lemma.

So if there is a1 ∈ D \ (D× ∪ {0}) that is not a product of
irreducibles (to start the chain), we can construct an ascending
chain of principal ideals that does not stabilize.
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D will therefore not satisfy the ACC on principal ideals.

This establishes the contrapositive of the theorem, thereby proving
it.

Corollary

Elements of a Noetherian domain can be factored into products of
irreducibles.

Corollary

Elements of a PID can be factored into products of irreducibles.

Daileda Factorization



Last Time Chain Conditions and Factorizations Uniqueness of Factorizations The Division Algorithm Revisited

Unique Factorizations

We have seen that a certain chain condition on ideals yields
factorizations of elements into irreducibles. What, if anything,
guarantees that such factorizations are unique?

Uniqueness Requirement 1. First of all, since we are dealing
with commutative rings that may not possess any natural ordering,
we should allow for rearrangement of the factors.

Some additional conditions are still needed, however, as the next
examples demonstrate.

Example. According to the definition,

6 = 2 · 3 = (−2)(−3)

are both factorizations of 6 into irreducibles in Z. Clearly they are
not the same, even if we allow rearrangement.
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The problem is the signs, which are the units of Z.

These are easy to dispense with in the FTA by dealing only with
positive primes.

But in general we cannot simply avoid elements that are associate.

Uniqueness Requirement 2. Associate factors should be
considered equivalent.

There’s still one more issue to consider.

Daileda Factorization



Last Time Chain Conditions and Factorizations Uniqueness of Factorizations The Division Algorithm Revisited

Example. Consider the factorizations

4 = 2 · 2 = (1 +
√
−3)

︸ ︷︷ ︸

α

(1−
√
−3)

︸ ︷︷ ︸

β

in D = Z[
√
−3].

We know α, likewise β, is irreducible in D.

So is 2, for if 2 = xy in D then

4 = N(2) = N(xy) = N(x)N(y).

We have already seen this equation implies x or y is a unit.

We have also seen that α ∤ 2 in D, so that α and 2 are not
associates.
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4 therefore has two distinct (even allowing for reordering and
associates) factorizations into irreducibles in D.

The Problem. In the proof of the FTA it is the irreducibility of
prime numbers that provides prime factorizations, but it is the fact
that prime numbers are actually ring-theoretically prime that
proves the uniqueness of those factorizations.

The latter is true in general. To prove it we first require a lemma.

Lemma

Let D be a domain and p, q ∈ D be prime. Then p|q if and only if
p and q are associates.
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Proof. p|q iff (q) ⊆ (p) iff (q) = (p) iff p and q are associates.

Here we have used the facts that:

primes are irreducible and;

irreducibles generate ideals that are maximal among principal
ideals.

Theorem (Uniqueness of Prime Factorizations)

Let D be a domain and let
p1, p2, . . . , pk , q1, q2, . . . , qℓ ∈ D \ (D× ∪ {0}) be prime. If

p1p2 · · · pk = q1q2 · · · qℓ (2)

then k = ℓ and, after possibly reordering, pi is associate to qi for
all i .
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Proof (sketch). Since p1 is prime, after possibly reordering, p1|q1,
and hence the two are associates by the previous result.

Absorbing the unit difference into p2, we can cancel to obtain

p2 · · · pk = q2 · · · qℓ.

Now repeat with p2 and q2, p3 and q3, etc. until one side runs out
of primes and is simply a unit.

This makes any factors on the other side units as well. Since
primes are not units, there can be no primes on the other side, so
k = ℓ.

A cleaner, more precise, proof is given by inducting on k .
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FTA domains

Finally we have

Uniqueness Requirement 3. Irreducibles must be prime.

Because the analogue of the FTA as we have formulated it would
hold in a domain D in which irreducibles are prime and all nonzero,
nonunit elements possess factorizations into irreducibles, we call
such a ring an FTA domain.

Remarks.

The terminology FTA domain is non-standard, but is
equivalent to the following more traditional definition.

The equivalence of irreducible with prime and the existence of
irreducible factorizations are independent: a ring may have
one property and not the other.
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UFDs

Definition

Let D be a domain and suppose that every a ∈ D \ (D× ∪ {0})
has a unique factorization into irreducibles, i.e. there exist
irreducibles r1, r2, . . . , rk ∈ D so that a = r1r2 · · · rk and if
s1, s2, . . . , sℓ ∈ D are irreducible and satisfy a = s1s2 · · · sℓ, then
k = ℓ and, after possibly reordering, ri is associate to si for all i .
Then D is called a unique factorization domain (UFD).

According to the results we have established, every FTA domain is
a UFD. The converse follows from the following fact.

Theorem

Let D be a UFD. If a ∈ D is irreducible, then a is prime.

Daileda Factorization



Last Time Chain Conditions and Factorizations Uniqueness of Factorizations The Division Algorithm Revisited

Proof. Let a ∈ D be irreducible and suppose a|bc in D.

Write ad = bc and factor each of b, c , d into irreducibles.

Since a occurs in the irreducible factorization of ad , uniqueness of
factorizations implies, without loss of generality, it is associate to
one of the irreducibles occurring in b.

That is, a|b and hence a is prime.

Because they are FTA domains according to earlier results,

Theorem

Every Noetherian domain in which irreducibles are prime is a UFD.
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We immediately point out that Noetherian may be weakened to
satisfying the ACC on principal ideals.

Corollary

Every PID is a UFD.

Corollary

Z and F [x ] are UFDs.

If D is a UFD, then content of polynomials in D[x ] is well-defined,
and Gauss’ Lemma and its consequences can be proven to hold. In
particular, one can use these results to prove that

Theorem

If D is a UFD, then so is D[x ].
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Z[x ] and F [x , y ] therefore provide examples of UFDs that are not
PIDs.

Regarding PIDs, we have thus far seen two: Z and F [x ].

Both were shown to be PIDs using an appropriate division
algorithm.

This puts them into a narrower class of domains, namely the
Euclidean domains.
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Euclidean domains

Definition

Let D be a domain. D is called a Euclidean domain (ED) if there
exists a function d : D \ {0} → N0 so that:

a. d(a) ≤ d(ab) for all a, b ∈ D \ {0};
b. if a, b ∈ D and b 6= 0, then there exist q, r ∈ D so that

a = bq + r with r = 0 or d(r) < d(b).

Z is an ED with d(n) = |n| and F [x ] is an ED with d(f ) = deg(f ).

Although they enjoy a host of properties similar to those of Z and
F [x ], for now we will only be concerned with one.

Theorem

Every ED is a PID.
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We give the “usual” proof.

Proof. Let D be an ED and I a nonzero ideal in D.

By the Well Ordering Principle, d(I \{0}) has a least element d(a).

Let b ∈ I and write b = aq + r with r = 0 or d(r) < d(a).

Since r = b − aq ∈ I , we cannot have d(r) < d(a).

Therefore r = 0 and b = aq ∈ (a).

Hence I ⊆ (a) ⊆ I , and so I = (a) is principal.
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Final Remarks

One can show that Z[i ] with

d(x + iy) = N(x + iy) = (x + iy)(x − iy) = x2 + y2

is an ED. See the textbook.

We have proven that

ED ⇒ PID ⇒ UFD.

Neither implication is reversible.

An example of a non-Euclidean PID is the ring

Z

[
1 +

√
−19

2

]

=

{
a+ b

√
−19

2

∣
∣
∣
∣
a ≡ b (mod 2)

}

.

See A Principal Ideal Ring That Is Not A Euclidean Ring.
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