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If N is the ideal of all nilpotent elements in a commutative ring R (see Exercise 1),
then R/N is a ring with no nonzero nilpotent elements.

Let R be a ring without identity and with no zero divisors. Let S be the ring
whose additive group is R X Z as in the proof of Theorem 1.10. Let
A= {(r;)eS|rx 4 nx = 0 for every x ¢ R}.

(a) A is an ideal in S.

(b) S/ A4 has an identity and contains a subring isomorphic to R.

(c) S/A has no zero divisors.

Let f: R — S be a homomorphism of rings, / an idealin R, and J an ideal in S.
(a) f7Y(J) is an ideal in R that contains Ker f.
(b) If fis an epimorphism, then f(I) is an ideal in S. If fis not surjective, f(I)
need not be an ideal in S.

If P is an ideal in a not necessarily commutative ring R, then the following con-
ditions are equivalent.

(a) P is a prime ideal.

(b) If r,s ¢ R are such that rRs C P, then r ¢ P or s ¢ P. [Hint. If (a) holds and
rRs C P, then (RrR)(RsR) C P, whence RrR C P or RsR C P,say RrR C P,
If A = (r), then 4* C RrR C P, whencere A C P.]

(c) If () and (s) are principal ideals of R such that (*)(s) C P, then re P or
seP.

(d) If Uand V are right ideals in R such that UV C P, thenU C Por ¥V C P,

(e) If Uand V are left ideals in R such that UV C P, thenU C Por ¥V C P,

The set consisting of zero and all zero divisors in a commutative ring with
identity contains at least one prime ideal.

Let R be a commutative ring with identity and suppose that the ideal 4 of R is

contained in a finite union of prime ideals P, U ... U P,. Show that 4 C P; for

some {. [Hint: otherwise one may assume that 4 N P; & |J P for all j. Let
i)

]
a;e (4 N PY)— (U P). Thena, + awas- - a2, isin A but notin P, U ... U P,.]
g

Let f: R— S be an epimorphism of rings with kernel K.
(a) If P is a prime ideal in R that contains K, then f(P) is a prime ideal in S
[see Exercise 13].
(b) If Qisaprimeideal inS, then f71(Q) is a prime ideal in R that contains K.
(c) There is a one-to-one correspondence between the set of all prime ideals
in R that contain K and the set of all prime ideals in S, given by P> f(P).
(d) If Iis anideal in a ring R, then every prime ideal in R/ is of the form P/I,
where P is a prime ideal in R that contains 1.

Anideal M > R in a commutative ring R with identity is maximal if and only if
for every r e R — M, there exists x ¢ R such that 1 — rxe M.

The ring E of even integers contains a maximal ideal M such that E/M is not
a field.

In the ring Z the following conditions on a nonzero ideal I are equivalent: (i) I is
prime; (ii)  is maximal; (iii) I = (p) with p prime.

Determine all prime and maximal ideals in the ring Z,.
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22. (@) If Ry, ..., R, are rings with identity and / is an idealin R; X - - - X R, then
I =4, X X An, where each 4;is an {dealin R;. [Hint: Given Ilet A, = m(I),
where ;1 Ry X - X R, — Ry is the canonical epimorphism.]

(b) Show that the conclusion of (a) need not hold if the rings R; do not have
identities.

23. An element ¢ in a ring R is said to be idempotent if ¢ = e. An element of the
center of the ring R is said to be central. If e is a central idempotent in a ring R
with identity, then

(a) 1g — e is a central idempotent;
(b) eR and (1z — €)R are ideals in R such that R = eR X (1z — e)R.

24, Idempotent elements ei, ..., e, in a ring R [see Exercise 23] are said to be
orthogonal if e;e; = Ofor i % j. If R, Ry, ..., R, are rings with identity, then the
following conditions are equivalent:

(a) RE/RI X"'XRn-

(b) R contains a set of orthogonal central idempotents (Exercise 23]
fey, ..., e} such that e; + e, 4--+ -+ e, = 1 and e;R & R, for each i.

(c) R is the internal direct product R = 4, X+ X A, where each 4; is an
ideal of R such that 4; = R;.
[Hint: (a) = (b) The elements & = (1£,0,...,0), & = (0,1z,0,...,0), ..., 2,
= (0,...,0,1g,) are orthogonal central idempotents in S = R, X« -+ X R,
such that & + - -+ &, = Isand &5 = R;. (b) = (c) Note that 4; = e,R is the
principal ideal (e;) in R and that e, R is itself a ring with identity e.]

25. If m ¢ Z has a prime decompositionm = pi- - -p#t (k; > 0; p; distinct primes),
then there is an isomorphism of rings Z,, & Z, 4t X+ «+ X Zp k. [Hint: Corollary
2.27]

26. f R = Z, A, = (6)and 4, = (4), then the map 6 : R/A; N Ay — R/A; X R/As
of Corollary 2.27 is not surjective.

3. FACTORIZATION IN COMMUTATIVE RINGS

In this section we extend the concepts of divisibility, greatest common divisor and
prime in the ring of integers to arbitrary commutative rings and study those integral
domains in which an analogue of the Fundamental Theorem of Arithmetic (Intro-
duction, Theorem 6.7) holds. The chief result is that every principal ideal domain is
such a unique factorization domain. In addition we study those commutative rings
in which an analogue of the division algorithm is valid (Euclidean rings).

Definition 3.1. A4 nonzero element a of a commutative ring R is said to divide an
element b ¢ R (notation: a | b) if there exists x € R such that ax = b, Elements a,b of R
are said to be associates ifa | b and b | a.

Virtually all statements about divisibility may be phrased in terms of principal
ideals as we now sce.
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Theorem 3.2. Let a,b and u be elements of a commutative ring R with identity.

@ albifand only if (b) C (a).

(i) a and b are associates if and only if () = (b).
(iii) u is a unit if and only ifu | r forallreR.
(iv) u is a unit if and only if(u) = R. . . =
(v) The relation “‘a is an associate of b is an equwalenc:e relation qn . 1
(vi) Ifa = br with re R a unit, then a and b are associates. If R is an integra

domain, the converse is true.

PROOF. Exercise; Theorem 2.5(v) may be helpful for (i) and (i). B

Definition 3.3. Let R be a commutative ring with identity. An element ¢ of R is
irreducible provided that:

(i) c is a nonzero nonunit;
(i) c=ab = aor b is a unit.

An element p of R is prime provided that:

() p is a nonzero nonunit;

(i) plab = plaorplb.

EXAMPLES. If p is an ordinary prime integer, then both p an.d —p are irre-

duci.ble and prime in Z in the sense of Definition 3.3. In the ring Ze, 2 is easily seen to

be a prime. However 2 ¢ Z; is not irreducible since 2 = 2-4 and .nelther. 2 nor 4 are

units in Z; (indeed they are zero divisors). For an example of an-irreducible element

which is not prime, see Exercise 3. . . ' ‘
There is a close ,connection between prime [resp. irreducible] elements in a ring R

and prime [resp. maximal] principal ideals in R.

Theorem 3.4. Let p and ¢ be nonzero elements in an integral domain R.

. P , . ime ideal:
i) p is prime if and only if (p) is nonzero prime ideal; .
(Eig ¢ is irreducible if and only if (<) is maximal in the set S of all proper principal
ideals of R. . bl
(iii) Fwvery prime element of R is irreduci e. o .
(iv) IfR is a principal ideal domain, then p is prime if and only if p is zr'reduct{)b[?
(v) Every associate of an irreducible [resp. prime] element of R is irreducible

[resp. prime].
(v) The only divisors of an irreducible element of R are

units of R,

Jits associates and the

REMARK. Several parts of Theorem 3.4 are true for any commutative ring with
identity, as is seen in the following proof.

SKETCH OF PROOF OF 34. (i) Use Definition 3.3 and Theorem 2.15. (ii) If
¢ is irreducible then (c) is a proper ideal of R by Theorem 3.2. If (¢) C (d), then
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¢ = dx. Since c is irreducible either dis a unit (whence (d) = R) or x is a unit (whence
(¢} = (d) by Theorem 3.2). Hence (c) is maximal in S. Conversely if (¢) is maximal in
S, then ¢ is a (nonzero) nonunit in R by Theorem 3.2. If ¢ = ab, then (¢) C (a),
whence (c) = (a) or (@) = R.If (a) = R, then ais a unit (Theorem 3.2). If (¢) = (a),
thena = cy and hence ¢ = ab = cyb. Since R is an integral domain 1 = yb, whence
b is a unit. Therefore, ¢ is irreducible. (iii) If p = ab, then p|a or p| b; say p | a.
Then px = g and p = ab = pxb, which implies that 1 = xb. Therefore, b is a unit.
(iv) If p is irreducible, use (ii), Theorem 2.19 and (i) to show that p is prime. (v) If ¢ is
irreducible and 4 is an associate of ¢, then ¢ = du with u ¢ R a unit (Theorem 3.2). If
d = ab, then ¢ = abu, whence 4 is a unit or bu is a unit. But if bu is a unit, so is b.
Hence 4 is irreducible. (vi) If ¢ is irreducible and a| ¢, then (¢) C (a), whence
(¢) = (a) or (a) = R by (ii). Therefore, a is either an associate of ¢ or a unit by
Theorem 3.2. @&

We have now developed the analogues in an arbitrary integral domain of the
concepts of divisibility and prime integers in the ring Z. Recall that every element in
Z is a product of a finite number of irreducible elements (prime integers or their
negatives) according to the Fundamental Theorem of Arithmetic (Introduction,
Theorem 6.7). Furthermore this factorization is essentially unique (except for the
order of the irreducible factors). Consequently, Z is an example of:

Definition 3.5. An integral domain R is a unique factorization domain provided that:

(i) every nonzero nonunit elemsont a of R can be written a = cicy++ +cn, With
C, . .., Co irreducible.

(i) Ifa = cica-» +Co and a = dids- - -du (ci,d; irreducible), then n = m and for
some permutation o 0f {1,2,...,n}, ¢ and d.y are associates for every i.

REMARK. Every irreducible element in a unique factorization domain is neces-
sarily prime by (ii). Consequently, irreducible and prime elements coincide by
Theorem 3.4 (iii).

Definition 3.5 is nontrivial in the sense that there are integral domains in which
every element is a finite product of irreducible elements, but this factorization is not
unique (that is, Definition 3.5 (ii) fails to hold); see Exercise 4. Indeed one of the
historical reasons for introducing the concept of ideal was to obtain some sort of
unique factorization theorems (for ideals) in rings of algebraic integers in which
factorization of elements was not necessarily unique; see Chapter VIII.

In view of the relationship between irreducible elements and principal ideals
(Theorem 3.4) and the example of the integers, it seems plausible that every principal
ideal domain is a unique factorization domain. In order to prove that this is indeed
the case we need:

Lemma 3.6. IfR is a principal ideal ring and (ar) C (a;) C - - - is a chain ofideals in
R, then for some positive integer n, (a;) = (an) for all j > n.

)
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PROOF. Let 4 = U (a). We claim that 4 is an ideal. If b,c ¢ A, then be (a)
i>1

and c ¢ (a;). Either | < jnor i > j;say i > j. Consequently (a;) C (a;) and b,c ¢ (as).
Since (a;) is an ideal b — c ¢ (a;) C A. Similarly if reR ar.1d be A, then be(ay),
whence rb ¢ (@) C A and br e (a;)) © A. Therefore, A is an ideal by Theorem 2.2.
By hypothesis 4 is principal, say A = (a). Since a € A = UJ(a)), a ¢ (a,) for some n.
By Definition 2.4 (a) C (a,). Therefore, for every j = n, (@) Cla) Clap CA=
(a), whence (a) = (a). B

Theorem 3.7. Every principal ideal domain R is a unique factorization domain.

REMARK. The converse of Theorem 3.7 is false. For example the polynomial
ring Z{x] can be shown to be a unique factorization domain (Theorem 6.14 below),
but Z[x] is not a principal ideal domain (Exercise 6.1).

SKETCH OF PROOF OF 3.7. Let S be the set of all nonzero nonunit ele-
ments of R which cannot be factored as a finite product of irreducible elements.
We shall first show that S is empty, whence every nonzero nonunit element of R has
at least one factorization as a finite product of irreducibles. Suppose S .is not erppty
and a ¢ S. Then (a) is a proper ideal by Theorem 3.2(iv) and is contained ina fl.laxx'mal
ideal (¢) by Theorem 2.18. The element c e R is irreducible by Theorem 3'_4(")' Slpce
(@) C (), c divides a. Therefore, it is possible to choose for each aesS an irreducible
divisor ¢, of a (Axiom of Choice). Since R is an integral domain, ¢. umguely deter-
mines a nonzero x, e R such that c,x, = a. We claim that x, ¢ 5. For if x, were a
unit, then @ = c.x, would be irreducible by Theorems 3.2(vi) and 3.4(v).If x,isa non-
unit and not in S, then x, has a factorization as a product of irreducibles, whencg a
also does. Since a ¢S this is a contradiction. Hence x, ¢ S. Furthermore, we claim
that the ideal (a) is properly contained in the ideal (x.). Since X, | a, (@) C (xa) by
Theorem 3.2(). But (@) = (x.) implies that x, = ay for some y e R,. whence
a = Xu¢e = ayc, and 1 = ye,. This contradicts the fact that ¢, is irreducible (and
hence a nonunit). Therefore (a) g (xa).

The preceding remarks show that the function f 15— S give'n by f(@) = x4 is
well defined. By the Recursion Theorem 6.2 of the Intreduction (with f= f, foralln)
there exists a function ¢ : N — S such that

0©) =a and ¢+ 1) = fle(m) = Xem (n 2 0).
1f we denote (1) by a., we thus have a sequence of elements of S:a,ai,aq,. .. such that
Ay = Xa3 Gy = Xayy * '3 gl = Xags * 00

Consequently, the preceding paragraph shows that there is an ascending chain
of ideals

(@) E (a1) E (a) (:2 (as) E t

contradicting Lemma 3.6. Therefore, the set .S must be empty, w}}ence every nonzero
nonunit element in R has a factorization as a finite product of irreducibles.
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Finally if cicy » ' ¢a = @ = dide - - d (ci,d: irreducible), then ¢, divides some d; by
Theorem 3.4(iv). Since ¢, is a nonunit, it must be an associate of d; by Theorem 3.4
(vi). The proof of uniqueness is now completed by a routine inductive argument. B

Several important integral domains that we shall meet frequently have certain
properties not shared by all integral domains.

Definition 3.8. Ler N be the set of nonnegative integers and R a commutative ring.
R is a Euclidean ring if there is a function ¢ : R — {0} — N such that:

(D) ifa,b e R and ab +# 0, then g(a) < p(ab);
(i) ifa,be Randb 7 0, then there exist q,r ¢ R such thata = gb + rwithr = 0,
orr # 0 and o(r) < ¢(b).

A Euclidean ‘ing which is an integral domain is called a Euclidean domain.

EXAMPLE. The ring Z of integers with ¢(x) = |x| is a Euclidean domain.

EXAMPLE., If Fisa field, let ¢(x) = 1 forall x ¢ F, x ¢ 0. Then Fis a Euclidean
domain.

EXAMPLE. If Fis a field, then the ring of polynomials in one variable F[x] is a
Euclidean domain with ¢(f) = degree of f; see Corollary 6.4 below.

EXAMPLE. Let Z[!] be the following subset of the complex numbers
Z[i] = {a+ bi|a, beZ}. Z[i] is an integral domain called the domain of Gaussian
integers. Define ¢(a + bi) = a* 4 b% Clearly ¢(a + bi) # 0if a + bi  0; it is also
easy to show that condition (i) of the definition is satisfied. The proof that ¢ satisfies
condition (ii) is left to the reader (Exercise 6).

Theorem 3.9. Every Euclidean ring R is a principal ideal ring with identity. Con-
sequently every Euclidean domain is a unique factorization domain. -

REMARK. The converse of Theorem 3.9 is false since there are principal ideal
domains that are not Euclidean domains (Exercise 8).

PROOF OF 3.9. If ] is a nonzero ideal in R, choose a ¢ I such that ¢(a) is the
least integer in the set of nonnegative integers {¢(x) | x # 0; xeI}. If be I, then
b =ga+ rwithr = 0orr # 0and ¢(r) < ¢(a). Since be I and ga ¢ I, r is necessarily
in I. Since ¢(r) < ¢(a) would contradict the choice of a, we must have r = 0, whence
b = ga. Consequently, by Theorem 2.5 C Ra C (a) C I. Therefore I = Ra = (a)
and R is a principal ideal ring.

Since R itself is an ideal, R = Ra for some a ¢ R. Consequently, a = ea = ge for
some ee R. If be R = Ra, then b = xa for some x ¢ R. Therefore, be = (xa)e
= x(ae) = xa = b, whence e is a multiplicative identity element for R. The last
statement of the theorem is now an immediate consequence of Theorem 3.7. B

We close this section with some further observations on divisibility that will be
used occasionally in the sequel (Sections 3, 6 and IV.6).

7
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Definition 3.10. Let X be a nonempty subset of a commutative ring R. An element
d ¢ R is a greatest common divisor of X provided:

() dlaforallaeX;
(i) claforallaeX = c|d.

Greatest common divisors do not always exist. For example, in the ring E qf even
integers 2 has no divisors at all, whence 2 and 4 have no (greatest) common dl\{lsor.
Even when a greatest common divisor of a, . . ., a, exists, it need no‘t be unique.
However, any two greatest common divisors of X are clearly assloc1ates by (ii).
Furthermore any associate of a greatest common divisor of X is easily seen to be a
greatest common divisor of X. If R has an identity and a,,4, SERE ay have lpasa
greatest common divisor, then a,,4,, . . . @, are said to be relatively prime.

Theorem 3.11. Les a, . . . , 2, be elements of a commutative ring R with identity.
(@) deR is a greatest common divisor of {ai, ..., a,} such that d = na
4.+ raay for some r; e R ifand only if (d) = (a) + (@) + -+ (an);
(ii) if R is a principal ideal ring, then a greatest common divisor of ay, ..., an

exists and every one is of the form nay+ -+ -+ Tnan (Tie R);
(iii) if R is a unique factorization domain, then there exists a greatest common

divisor of a, . . ., an.

REMARK. Theorem 3.11(i) does not state that every greatest common di}/igor of
ai, ..., an s expressible as a linear combination of ay, . . . , @ In general this is not
the case (Exercise 6.15). See also Exercise 12.

SKETCH OF PROOF OF 3.11. (i) Use Definition 3.10 and Theorem 2.5.

(ii) follows from (i). (iii) Bach a;has a factorization: g, = cTegn - * cMewithey, .. G

distinet irreducible elements and each m;; > 0. Show that d = cifief - et is a

greatest common divisor of a, . . ., @, Where k; = min {mjmaistisg, oo« Majl. B
EXERCISES

1. A nonzero ideal in a prircipal ideal domain is maximal if and only if it is prime.

2. An integral domain R is a unique factorization domain if and only if every non-
zero prime ideal in R contains a nonzero principal ideal that is prime.

3. Let R be the subring {a 4 /10 | a,b ¢ Z} of the field of real numbers.

(a) The map N:R—Z given by a+ b\[l_OH (a + b\/l—())(a — b\/ﬁ)
= g — 1082 is such that N(uv) = N(N(v) for all #,v ¢ R and N(u) = 0 if and
only if u = 0.

(b) uis a unit in R if and only if N(u) = £1.

() 2,3,4+ \/—1—6 and 4 — \[1—0 are irreducible elements of R.

(d) 2,3, 4 + /10 and 4 — /10 are not prime elements of R. [Hint:3:.2 =6

= (4 + VI0)d — \10).]

4. Show that in the integral domain of Exercise 3 every element can Fae fac.tored
into a product of irreducibles, but this factorization need not be unique (in the
sense of Definition 3.5 (ii)).
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5. Let R be a principal ideal domain,

(a) Every proper ideal is a product P,P;. - - P, of maximal ideals, which are
uniquely determined up to order.

(b) An ideal P in R is said to be primary if ab ¢ P and a ¢ P imply b" ¢ P for
some n. Show that P is primary if and only if for some n, P = (p~), where p ¢ R is
prime (= irreducible) or p = 0.

(c) If P,,P,, . . ., P, are primary ideals such that P;=(p;~)and the p; are
distinct primes, then P\P;- - P, = P, N1 P, N ... N P,.

(d) Every proper ideal in R can be expressed (uniquely up to order) as the
intersection of a finite number of primary ideals.

6. (a) If a and »n are integers, n > 0, then there exist integers ¢ and r such that
a = gn + r, where |r| < n/2. )
(b) The Gaussian integers Z[i] form a Euclidean domain with ¢(a 4 bi)
= g% 4 b%-[Hint: to show that Definition 3.8(ii) holds, first let y = a + i and
assume x is a positive integer. By part(a) there are integers such thata = qix 4+ r,
and b = gox + 1y, with |r| < x/2, 1] < x/2. Letq = g1 + quiand r = r1 + rii;
then y = gx + r, with r = O or ¢(r) < ¢(x). In the general case, observe that for
x=c+di#0 and * = ¢ — di,x® > 0. There are g,ro¢ Z[i] such that
yx = q(xx) + ro, withry = Oor ¢(rg) < @(x%).Letr =y — gx;theny = gx+r
and r = 0 or ¢(r) < ¢(x).]

7. What are the units in the ring of Gaussian integers Z[{]?

8. Let R be the following subring of the complex numbers:
R = {a+ b + /19 ©)/2 | a,b ¢ Z}. Then R is a principal ideal domain
that is not a Euclidean domain.

9. Let R be a unique factorization domain and 4 a nonzero element of R. There are
only a finite number of distinct principal ideals that contain the ideal (d). [Hint:
DS E)y=k|d]

10. If Risa uniqué factorization domain and a,b ¢ R are relatively prime and a | bc,
then a | c. '

11. Let RbeaEuclideanringand a¢ R. Then ais a unitin R if and only if ¢(a) = ¢(15).

12. Every nonempty set of elements (possibly infinite) in a commutative principal
ideal ring with identity has a greatest common divisor.

13. (Euclidean algorithm). Let R be a Euclidean domain with associated function
¢ R — {0} - N.Ifa,b e Rand b # 0, here is a method for finding the greatest
common divisor of ¢ and 4. By repeated use of Definition 3.8(ii)) we have:

a=qb +r, with rn=0 or ¢(r) < ¢b);
b=qri+r, with rn=0 or o) < elr);
rnn=gqr:+r, with rn=0 or olr) < e(r);

Pe = Qeptfei F P, With 12 =0 o @(re) < o(reg);
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Let ry = band let n be the least integer such that 7., = 0 (such an » exists since
the () form a strictly decreasing sequence of nonnegative integers). Show that
rs is the greatest common divisor a and b.

4. RINGS OF QUOTIENTS AND LOCALIZATION

In the first part of this section the familiar construction of the fiela of rational
numbers from the ring of integers is considerably generalized. The rings of quotients
so constructed from any commutative ring are characterized by a universal mapping
property (Theorem 4.5). The last part of this section, which is referred to only oc-
casionally in the sequel, deals with the (prime) ideal structure of rings of quotients
and introduces localization at a prime ideal. ‘

Definition 4.1. A nonempty subset S of a ring R is multiplicative provided that
a,beS = abeS.

EXAMPLES. The set .S of all elements in a nonzero ring with identity that are
not zero divisors is multiplicative. In particular, the set of all nonzero elements in an
integral domain is multiplicative. The set of units in any ring with identity is a
multiplicative set. If P is a prime ideal in a commutative ring R, then both P and
S = R — Prare multiplicative sets by Theorem 2.15.

The motivation for what follows may be seen most easily in the ring Z of integers
and the field Q of rational numbers. The set S of all nonzero integers is clearly a
multiplicative subset of Z. Intuitively the field Q is thought of as consisting of all
fractions a/b with a ¢ Z and b ¢ S, subject to the requirement

a/b=c/d & ad= bc(orad— bc = 0).

More precisely, Q may be constructed .as follows (details of the proof will be
supplied later). The relation on the set Z X S defined by

(a,b) ~(c,d) & ad—bc=0

is easily seen to be an equivalence relation. Q is defined to be the set of equivalence
classes of Z X S under this equivalence relation. The equivalence class of (a,b) is
denoted a/b and addition and muitiplication are defined in the usual way. One
verifies that these operations are well defined and that Q is a field. The map Z — Q
given by ab- a/1 is easily seen to be a monomorphism (embedding).

We shall now extend the construction just outlined to an arbitrary multiplicative
subset of any commutative ring R (possibly without identity). We shall construct a
comrmutative ring SR with identity and a homomorphism ¢gs : R — SR, If S is
the set of all nonzero elements in an integral domain R, then SR will be a field
('R = Q if R = Z) and ¢s will be a monomorphism embedding R in SR,

Theorem 4.2. Let S be a multiplicative subset of a commutative ring R. The relation
defined on the set R X S by

(rs) ~('s) & sts’ —1's) =0 forsome s,eS
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is an equivalence relation. Furthermore if R has no zero divisors and 0 4 S, then

s~ @s) & s’ —r's=0.
PROOF. Exercise. H

Let S be a multiplicative subset of a commutative ring R and ~ the equivalence
relation of Theorem 4.2. The equivalence class of {r,5) ¢ R X S will be denoted r/s.
The set of all equivalence classes of R X S under ~ will be denoted by S~!R. Verify
that

@ r/s=r/s & s(rs —rs) =0 for some s eS;
(ii) tr/ts = r/sfor all re R and 5,7 ¢ S;
(iii) If 0 ¢ S, then S~'R consists of a single equivalence class.

Theorem 4.3. Ler S be a multiplicative subset of a commutative ring R and let ST'R
be the set of equivalence classes of R X S under the equivalence relation of Theorem 4.2,

(i) S7IR is a commutative ring with identity, where addition and multiplication are
defined by

r/s +1'/s’ = (15’ + v's)/ss’ and (t/s)(r’'/s") = 1r'/ss’.

(ii) IfR is a nonzero ring with no zero divisors and 0 ¢ S, then S™'R is an integral
domain,

(iii) IfR is a nonzero ring with ro zero divisors and S is the set of all nonzero ele-
ments of R, then SR is q field.

SKETCH OF PROOF. (i) Once we know that addition and multiplication in
SR are well-defined binary operations (independent of the choice of r,s,r’,s"), the
rest of the proof of (i) is routine. In particular, for all 5,5’ ¢S, 0/s = 0/s' and 0/s is
the additive identity. The additive inverse of r/sis —r/s. For any 5,5’ ¢ S, s/s = 5'/¢'
and s/s is the multiplicative identity in S'R.

To show that addition is well defined, observe first that since S is multiplicative
(rs’ + r's)/ss’ is an element of S~'R. If r/s = r\/s, and r’/s’ = r{/s{, we must show
that (rs' + r's)/ss’ = (rs/’ + r’sy)/sisy’. By hypothesis there exist 5,53 £ S such that

so(rsy — ns) = 0,
si(r's! — ') = 0.

Multiply the first equation by ses’s:’ and the second by s»s51. Add the resulting equa-
tions to obtain

5255((rs’ + r'S)sis’ — (ns’ 4 rfs)ss’] = 0.

Therefore, (rs’ + r's)/ss' = (ns/ + ris1))/ss’ (since 5s:e8). The proof that
multiplication is independent of the choice of r,s,r',s is similar.

(i) If R has no zero divisors and 0 ¢ S, then r/s = 0/sifand only if r = O in R.
Consequently, (r/s)(*'/s’) = 0in S~'R if and only if rr’ = Oin R. Since rr' = 0 if
andonly if r = Oor# = 0, it follows that S~'R is an integral domain. (iii) If r # 0,
then the multiplicative inverse of r/s¢ S7'Ris s/reS7'R. B
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The ring S7'R in Theorem 4.3 is called the ring of quotients or ring of fractions or
quotient ring of R by S. An important special case occurs when S is the set of all non-
zero elements in an integral domain R. Then S7IR is a field (Theorem 4.3(iii)) which
is called the quotient field of the integral domain R, Thus if R = Z, the quotient field
is precisely the field Q of rational numbers, More generally suppose R is any non-
zero commutative ring and S is the set of all nonzero elements of R that are nor zero
divisors. If S is nonempty (as is always the case if R has anidentity), then S7'R is
called the complete (or full) ring of quotients (or fractions) of the ring R.* Theorem 4.3
(iii) may be rephrased: if a nonzero ring R has no zero divisors, then the complete
ring of quotients of R is a field. Clearly the complete ring of quotients of an integral
domain is just its quotient field.

If ¢ : Z— Q is the map given by n}— n/1, then ¢ is clearly a monomorphism
that embeds Z in Q. Furthermore, for every nonzero n, ¢(n) is a unit in Q. More
generally, we have:

Theorem 4.4. Let S be amultiplicative subset of a commutative ring R.

(i) The map ¢s: R — S7IR given by rlo 1s/s (for any seS) is a well-defined
homomorphism of rings such that ¢s(s) is a unit in STIR for every se S.
(i) If0 ¢S and S contains no zero divisors, then ¢s is a monomorphism. In par-
ticular, any integral domain may be embedded in its quotient field.
Gii) IfR has an identity and S consists of units, then ¢s is an isomorphism. In par-
ticular, the complete ring o fquotients (= quotient field) ofa field F is isomorphic to F.

SKETCH OF PROQF. (i) If 5,5’ ¢ .S, then rs/s = rs’/s’, whence ¢g is well de-
fined. Verify that ¢ is a ring homomorphism and that for each s S, s/s2¢ S7'R is
the multiplicative inverse of s*/s = ¢s(s). (i) If @s(r) = rs/s = 0 in SIR, then
rs/s = 0/s, whence rs%s; = 0 for some s; €S, Since 2% €.5, s%s # 0. Since S has no
zero divisors, we must have r = 0. (iii) ¢s is a monomorphism by (ii). If »/s ¢ SR
with s a unit in R, then r/s = ¢gs(rs7t), whence ¢s is an epimorphism. B

In view of Theorem 4.4 (ii) it is customary to identify an integral domain R with
its image under ¢s and to consider R as a subring of its quotient field. Since 1z ¢ S in
this case, r ¢ R is thus identified with r/1g ¢ STIR.

The next theorem shows that rings of quotients may be completely characterized
by a universal mapping property. This theorem is sometimes used as a definition of
the ring of quotients.

Theorem 4.5. Ler S be a multiplicative subset of a commutative ring R and let T be
any commatative ring with identity. Iff : R — T is a homomorphism ofrings such that
f(s) is a unit in T for all s €S, then there exists a unique homomorphism of rings
f: SR — T such that Tos = f. The ring SR is completely determined (up to iso-
morphism) by this property.

SKETCH OF PROOF. Verify that themap f:SR—T given by f(r/s)
= f(r) f(s)™ is a well-defined homomorphism of rings such that fes = f. If

$For the noncommutative analogue, see Definition 1X.4.7.
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g :S7'R — Tis another homomorphism such that ges = £, then for every se S,
g(ps(s)) is a unit in 7. Consequently, g(ps(s)™ = glps(s))™! for every seS by
Exercise 1.15. Now for each s¢.S, ps(s) = s%/s, whence ¢s(s)™* = s/52 ¢ SIR. Thus
for each r/s ¢ STIR:

g(r/s) = glos(r)es(D™ = gles(Mgles(s)™ = gles(r))elos(s)™
= fO = fr/9).
Therefore, f= g.

To prove the last statement of the theorem let © be the category whose objects
are all ( f;T), where 7T is a commutative ring with identity and f : R — T a homomor-
phism of rings such that f(s) is a unit in 7T for every s ¢ S. Define a morphism in @
from ( £i,71) to ( £3,T2) to be a homomorphism of rings g : 71 — T, such that g f; = fo.
Verify that € is a category and that a morphism g in € (A,T1) — (£3,T2) is an equiv-
alence if and only if g : T\ — T, is an isomorphism of rings. The preceding paragraph
shows that (pg,S7'R) is a universal object in the category @, whence S—R is com-
pletely determined up to isomorphism by Theorem 1.7.10. &

Covrollary 4.6. Ler R be an integral domain considered as a subring of its quotient
field B, IfE is a field and f : R — E a monomorphism of rings, then there is a unique
monomorphism of fieldst : F — E such that T | R = £. In particular any field E, con-
taining R contains an isomorphic copy F, of F with R C F; C E..

SKETCH OF PROOF. Let S be the set of all nonzero elements of R and apply
Theorem 4.5 to f: R — E. Then there is a homomorphism f : S'R = F — E such
that fos = f. Verify that fis a monomorphism. Since R is identified with og(R), this
means that f | R = f. The last statement of the theorem is the special case when
f : R— E, is the inclusion map. ®&

Theorems 4.7-4.11 deal with the ideal structure of rings of quotients. This
material will be used only in Section VIIL.6. Theorem 4.13, which does not depend
on Theorems 4.7-4.11, will be referred to in the sequel.

Theorem 4.7. Ler S be a multiplicative subset of a commutative ring R.

@ If1is anideal in R, then ST = {a/s|a e ;s S} is an ideal in SR,
(i) IfJ is another ideal in R, then

SHI+ 1) =S™I+ S7;
ST = (57DE);
SHANJ) =s"1N S

REMARKS. S~/ is called the extension of I in S™'R. Note that r/s ¢ S~I need
not imply that r ¢ [ since it is possible to have a/s = r/s withac I, r ¢ L. :

n
SKETCH OF PROOF OF 4.7. Use the facts that in S™'R, D, (ci/s)
1=l

= (Z": C«')/ 5; i (abi/s) = Zm:l (ai/s)(bis/s); and
= /=

1=1

B
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¢

3 .
Z (ck/sk) = <Z CrS18e ¢t Sk—1Skqic * S;)/Slsz' 5. B
k=1

h=1

Theorem 4.8. Ler S be a multiplicative subset of a commutative ring R with identity
and let 1 be an ideal of R. Then S~ = S™IR ifand only if S N 1 # .

PROOF. If s¢S N I, then 141, = s/s&S and hence S~/ = S7'R. Con-
versely, if $~1I = S~1R, then ps(S~1) = R whence ¢s(1z) = a/sforsomeacel, seS.
Since ¢s(1z) = 1gs/s we have s¥%; = ass; for some s1eS. But %51 ¢S and assie !
implySNI= . ®

In order to characterize the prime ideals in a ring of quotients we need a lemma.
Recall that if J is an ideal in a ring of quotients S™'R, then ¢s7*(J) is an ideal in R
(Exercise 2.13). ps71(J) is sometimes called the contraction of J in R.

Lemma 4.9. Let S be a multiplicative subset of a commutative ring R with identity
and let 1 be an ideal in R.

() I C s i(S™).
i) IfY = s (J) for some ideal I in SR, then S = J. In other words every
ideal in S™R is of the form S for some ideal 1 in R.
(i) IfP is a prime ideal in R andS N\ P = &, then S7'P is a prime ideal in SR
and ¢37(S71P) = P.

PROOF. (i) If ae !, then as ¢ I for every s ¢ S. Consequently, ¢s(a) = as/s €S,
whence a ¢ osN(S™). Therefore, I C s (S™1). (i) Since I = ¢s7'(J) every ele-
ment of S~ is of the form r/s with ¢s(r) e J. Therefore, r/s = (1r/5)(rs/5)
= (1z/S)ps(r) ¢ J, whence S~ C J. Conversely, if r/seJ, then os(r) = rs/s
= (r/s)(s*/s)eJ, whence reps(J) =1 Thus r/seS™ and hence J C S
(iii) S™'P is an ideal such that S—'P 5% S~1R by Theorem 4.8.If (r/s)(+'/s") ¢ ST'P,
then rr'/ss’ = a/t with a¢ P, t £ S. Copsequently, surr’ = siss'a e P for some s ¢ S.
Since sifeS and S N P = &, Theorem 2.15 implies that rr' ¢ P, whence re P or
r' ¢ P. Thus r/seS™'P or r'/s’ e S7'P. Therefore, S7'P is prime by Theorem 2.15.
Finally P C 057 }(S~'P) by (i). Conversely if r € ¢51(S™'P), then os(r) ¢ S7'P. Thus
os(r) = rs/s = a/t with ae P and s, t ¢ S. Consequently, sistr = sisa ¢ P for some
s1€S. Since ssreS and S N P= &, reP by Theorem 2.15. Therefore,
es(SP)C P. m

Theorem 4.10. Let S be a multiplicative subset of a commutative ring R with identity.
. Then there is a one-to-one correspondence between the set W of prime ideals of R which
are disjoint from S and the set U of prime ideals 0f S7IR, given by P> S7'P.

PROOF. By Lemma 4.9(iii) the assignment P S~'P defines an injective map
U — V. We need only show that it is surjective as well. Let J be a prime ideal of
SR and let P = @57'(J). Since S~'P = J by Lemma 4.9(ii), it suffices to show that
Pis prime. If ab ¢ P, then ps(a)es(h) = ¢s(ab) e Jsince P = ¢g7'(J). Since J is prime
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in S7IR, either @s(a)eJ or ¢s(b) ¢ J by Theorem 2.15. Consequently, either
ae s YJ) = Por beP. Therefore, P is prime by Theorem 2.15. &

Let R be a commutative ring with identity and P a prime ideal of R. Then
§ = R — P is a multiplicative subset of R by Theorem 2.15. The ring of quotients
SR is called the localization of R at P and is denoted Rp. If Iis an ideal in R, then
the ideal S~ in Rp is denoted Ip.

Theorem ‘4.1]’.. Let P be a prime ideal in a commutative ring R with identity.

(i) There is a one-to-one correspondence between the set of prime ideals of R which
are contained in P and the set of prime ideals of Ry, given by Q- Qp;
(ii) the ideal Pp in Rp is the unique maximal ideal of Rp.

PROOF. Since the prime ideals of-R contained in P are precisely those which are
disjoint from.S = R — P, (i) is an immediate consequence of Theorem 4.10. If Mis a
maximal ideal of Rp, then M is prime by Theorem 2.19, whence M = Qp for some
prime ideal Q of R with Q C P. But Q C P implies Qp C Ps. Since Pp 7 Rp by
Theorem 4.8, we must have Op = Pp. Therefore, Pp is the unique maximal ideal
in Rp. B

Rings with a unique maximal ideal, such as Rp in Theorem 4.11, are of some
interest in their own right.
Definition 4.12. A local ring is a commutative ring with identity which has a unique

maximal ideal.

REMARK. Since every ideal in a ring with identity is contained in some maximal
ideal (Theorem 2.18), the unique maximal ideal of a local ring R must contain every

. ideal of R (except of course R itself).

EXAMPLE. If p is prime and n > 1, then Z,. is a local ring with unique maxi-
mal ideal (p).

Theorem 4.13. If R is a commutative ring with identity then the following conditions
are equivalent,

(i) R is a local ring;
Gi) all nonunits of R are contained in some ideal M # R
(iii) the nonunits of R form an ideal.

SKETCH OF PROOF. If I is an ideal of R and a ¢ I, then (a) C Iby Theorem
2.5. Consequently, I ¢ R if and only if I consists only of nonunits (Theorem 3.23v)).
(i) = (iii) and (iii) = (i) follow from this fact. (i) = (ii) If @ ¢ R is a nonunit, then
(a) # R. Therefore, (a) (and hence a) is contained in the unique maximal ideal of R
by the remark after Definition 4.12. g
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EXERCISES
1. Determine the complete ring of quotients of the ring Z, for each n > 2.

10.

11.

12.

13.

14,

15.

. Let.S be a multiplicative subset of a commutative ring R with identityand let T'bea

multiplicative subset of the ring S™R. Let Sy = {re R | r/se T for some seS}.
Then S, is a multiplicative subset of R and there is a r1ing isomorphism
S4~R = T{S'R).

. (2) The set E of positive even integers is a multiplicative subset of Z such that

E~Y(Z) is the field of rational numbers.
(b) State and prove condition(s) on a multiplicative subset S of Z which insure
that S—1Z is the field of rationals.

. IfS = {2,4} and R = Z;, then S™'R is isomorphic to the field Z;. Consequently,

the converse of Theorem 4.3(ii) is false.

. Let R be an integral domain with quotient field F, If T'is an integral domain such

that R C T C F, then F is (isomorphic to) the quotient field of T.

. Let S be a multiplicative subset of an integral domain R such that 0 ¢ S.If Risa

principal ideal domain [resp. unique factorization domain], then so is S7*R.

. Let R, and R, be integral domains with quotient fields F; and F, respectively. If

f iR — R; is an isomorphism, then f extends to an isomorphism Fi == F,.
[Hint: Corollary 4.6.]

. Let R be a commutative ring with identity, I an ideal of R and 7 : R — R/l the

canonical projection.

(a) If S is a multiplicative subset of R, then wS = =(S) is a multiplicative
subset of R/I. )

(b) The mapping 6 : S'R — (mS)"R/1) given by r/sl> n(r)/n(s) is a well-
defined function. '

(c) 8 is a ring epimorphism with kernel S~/ and hence induces a ring iso-
morphism STR/S™Y =2 (wS)H(R/I).

. Let S be a multiplicative subset of a commutative ring R with identity. If I is an

ideal in R, then S~%(Rad I) = Rad (57). [See Exercise 2.2.}

Let R be an integral domain and for each maximal ideal M (which is also prime,
of course), consider Ry as a subring of the quotient field of R. Show that
N Ry = R, where the intersection is taken over all maximal ideals M of R.

Let p be a prime in Z; then (p) is a prime ideal. What can be said about the rela-
tionship of Z, and the localization Z,?

A commutative ring with identity is local if and only if for allr,s e R, r -+ s = 1z
implies r or sis a unit.

The ring R consisting of all rational numbers with denominators not divisible by
some (fixed) prime p is a local ring.

If M is a maximal ideal in a commutative ring R with identity and n is a positive
integer, then the ring R/M™ has a unique prime ideal and therefore is local.
In a commutative ring R with identity the following conditions are equivalent:
() R has a unique prime ideal; (ii) every nonunit is nilpotent (see Exercise 1.12});
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(iii) R has a minimal prime ideal which contains all zero divisors, and all non-
units of R are zero divisors.

16. Every nonzero homomorphic image of a local ring is local.

5. RINGS OF POLYNOMIALS AND FORMAL POWER SERIES

We begin by defining and developing notation for polynomials in one indeter-
minate over a ring R. Next the ring of polynomials in » indeterminates over R is
defined and its basic properties are developed. The last part of the section, which is
not needed in the sequel, is a brief introduction to the ring of formal power series in
one indeterminate over R.

Theorem 5.1. Let R be a ring and let R[X] denote the set of all sequences of elements
of R (ao,ay, . . .) such that a; = 0 for all but a finite number of indices i.

(i) R[X] is a ring with addition and multiplication defined by:
(30,31, .o ) + (bO,bl, ‘e ') = (ao + bo,al + bl, . )

and
(@021, . -)(bo,bh o ') = (C‘chl’ v '),
where

n
Cy = Z a-n—ibi = anbo + an—lbl + e +albn—l + aobn = Z akb;,
1=0 . k+j=n
(i) If R is commutative [resp. a ring with identity or a ring with no zero divisors or
an integral domain}, then so is R([x]. )
(iii) The map R — Rx] given by > (1,0,0,...) is a monomorphism of rings.

PROOF. Exercise. If R has an identity 1g, then (1£,0,0, . . .) isanidentity in R[x].
Observe that if (ag,a1, . . .), (bo,b1, . . .) & R[x] and k [resp. j] is the smallest index such
that a; = O [resp. b; # 0], then

(ao,ax, . .)(bo,bl, . ) = (0, e ,O,akb;,a;,+1b,~ + akbm, N ) B

The ring R{x] of Theorem 5.1 is called the ring of polynomials over R. Its elements
are called polynomials. The notation R[x] is explained below. In view of Theorem
5.1(iii) we shall identify R with its isomorphic image in R[x] and write (+,0,0,...)
simply as r. Note that r(ae,a, . . .) = (rag,ra, . . .). We now develop a more familiar
notation for polynomials.

Theorem 5.2. Ler R be a ring with identity and denote by X the element (0,18,0,0, . ..)
of R[x].

i) x» = (0,0,...,0,18,0, .. .), where 1n is the (n + 1)st coordinate.
(ii) IfreR, then for eachn > 0, rx* = xor = (0,...,0,1,0,...), where t is the
(n + 1)st coordinate.




