Algebra II
Assignment 1.1
Fall 2017

Exercise 1. Let $n \in \mathbb{Z}, n \neq \square$ (so that \sqrt{n} is irrational;). Show that

$$
\mathbb{Z}\left[\frac{1+\sqrt{n}}{2}\right]=\left\{\left.\frac{a+b \sqrt{n}}{2} \right\rvert\, a \equiv b(\bmod 2)\right\},
$$

under the usual arithmetic operations in \mathbb{C}, is a ring if and only if $n \equiv 1(\bmod 4)$.

Exercise 2. Show that

$$
\mathbb{Q}[\sqrt[3]{2}]=\left\{a+b 2^{1 / 3}+c 2^{2 / 3} \mid a, b, c \in \mathbb{Q}\right\},
$$

under the usual arithmetic operations in \mathbb{C}, is a ring.

Exercise 3. Let α denote a symbol with the property that $\alpha^{2}+\alpha+1=0$. Show that $\alpha \notin \mathbb{Z}_{2}$ and that

$$
\mathbb{Z}_{2}[\alpha]=\left\{a+b \alpha \mid a, b \in \mathbb{Z}_{2}\right\},
$$

under the "natural" arithmetic operations, is a ring. How many elements does it have? Construct a multiplication table for $\mathbb{Z}_{2}[\alpha]$.

Exercise 4. Let R be a ring, $a, b \in R$ and $m, n \in \mathbb{Z}$. Prove that:
a. $m(a b)=(m a) b=a(m b)$
b. $(m a)(n b)=(m n)(a b)$

Remark. We define $0 a=0$, where the zero on the left belongs to \mathbb{Z} while the zero on the right belongs to R.

Exercise 5. Show that every additive subgroup of \mathbb{Z}_{n} is a ring.
Exercise 6. Find an integer n that shows the ring \mathbb{Z}_{n} need not have the following "ordinary" properties of \mathbb{Z}.
a. If $a \neq 0$, then $a x=b$ has at most one solution.
b. If $a^{2}=a$, then $a=0$ or $a=1$.
c. If $a b=0$, then $a=0$ or $b=0$.

Exercise 7. Show that if n is prime in the preceding exercise, then statements a-c are actually valid.

Exercise 8. Let R be a ring and G be an additive abelian group. Given an indeterminate (variable) X consider the formal linear combinations of "powers" of X with exponents coming from G and coefficients in R, i.e. "power series" of the form

$$
\begin{equation*}
f=\sum_{g \in G} a_{g} X^{g}, \quad a_{g} \in R \text { for all } g \in G . \tag{1}
\end{equation*}
$$

Let $R[[X ; G]]$ denote the set of all such objects. Given $f \in R[[X ; G]]$ as in (1), the set $\operatorname{Supp} f=\left\{a_{g} \neq 0\right\}$ is called the support of f. We now define

$$
R[X ; G]=\{f \in R[[X ; G]] \mid \operatorname{Supp} f \text { is finite }\},
$$

the "polynomials" in $\mathrm{R}[[\mathrm{X} ; \mathrm{G}]]$. We define the sum and product of elements of $R[X ; G]$ as follows:

$$
\begin{aligned}
\left(\sum_{g \in G} a_{g} X^{g}\right)+\left(\sum_{g \in G} b_{g} X^{g}\right) & =\sum_{g \in G}\left(a_{g}+b_{g}\right) X^{g}, \\
\left(\sum_{g \in G} a_{g} X^{g}\right) \cdot\left(\sum_{g \in G} b_{g} X^{g}\right) & =\sum_{g \in G}\left(\sum_{h+j=g} a_{h} b_{j}\right) X^{g} .
\end{aligned}
$$

In the final expression the innermost sum runs over all ordered pairs $(h, j) \in G \times G$ so that $h+j=g$.
a. Explain why $R[X ; G]$ is closed under the addition and multiplication operations just defined.
b. Prove that $R[X ; G]$ is a ring. It is called the group ring of G over R.
c. Why might $R[[X ; G]]$ with the same operations fail to be a ring? Give an explicit example.
d. What example from class does $\mathbb{Z}[X ; \mathbb{Z}]$ reproduce?
e. Describe $\mathbb{Z}\left[X ; \mathbb{Z}_{2}\right]$.

