Exercise 1. Consider the set

$$
\mathbb{H}=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\}
$$

of all formal linear combinations of the (linearly independent) symbols $1, i, j$ and k.
a. If we declare that $i^{2}=j^{2}=k^{2}=i j k=-1$, show that $i j=k, j k=i, k i=j$ and that i, j, k anti-commute, i.e. satisfy $x y=-y x$.
b. Using component-wise addition and polynomial multiplication (subject to the relationships of part a), \mathbb{H} becomes a ring known as the (Hamiltonian) quaternions (you don't need to prove this). Given $x=a+b i+c j+d k \in \mathbb{H}$, we define its conjugate to be $\bar{x}=a-b i-c j-d k$. Show that

$$
x \bar{x}=\bar{x} x=a^{2}+b^{2}+c^{2}+d^{2} .
$$

c. Use part b to show that $\mathbb{H}^{\times}=\mathbb{H} \backslash\{0\}$.

Exercise 2. Let R be a commutative ring with unity, $a, b \in R$.
a. Show that if a is a unit and $b^{2}=0$, then $a+b$ is also a unit.
b. Show that if a and b are both nilpotent ($a^{m}=b^{n}=0$ for some $m, n \in \mathbb{N}$), then $a+b$ is also nilpotent.

Exercise 3. Find all linear and quadratic units in $\mathbb{Z}_{4}[x]$.

Exercise 4. Let R be a ring with unity and suppose $a \in R$ satisfies $a^{2}=1$. Prove that $S=a R a=\{a r a \mid r \in R\}$ is a subring of R with unity.

Exercise 5. Prove Theorem 12.1.

Exercise 6. Let R be a ring. Prove that each of the following hypotheses imply R is commutative.
a. $a^{2}-b^{2}=(a-b)(a+b)$ for all $a, b \in R$.
b. $(R,+)$ is cyclic.
c. $a^{2}=a$ for all $a \in R$.

