

 $\begin{array}{c} {\rm Algebra} \ {\rm II} \\ {\rm Fall} \ 2017 \end{array}$

Assignment 10 Due November 8

Exercise 1. A *derivation* on a domain R is an additive homomorphism $d: R \to R$ satisfying

$$d(rs) = rd(s) + sd(r)$$

for all $r, s \in R$. Let d be a derivation on $\mathbb{Q}[x]$.

- **a.** Show that d(1) = 0. Conclude that d(n) = 0 for all $n \in \mathbb{Z}$.
- **b.** Show that d(r) = 0 for all $r \in \mathbb{Q}$.
- **c.** Show that $d(f) = f' \cdot d(x)$ for all $f \in \mathbb{Q}[x]$.
- **d.** Let $h \in \mathbb{Q}[x]$. Show that d(f) = hf' defines a derivation on $\mathbb{Q}[x]$. Together with part **c**, this classifies all the derivations of $\mathbb{Q}[x]$.

Exercise 2. Let F be a field. Show that the roots of $x^n - 1$ in F form a subgroup of F^{\times} .