Algebra II
Assignment 11.1
FALL 2017
Due November 15

Exercise 1. Let F be a field of characteristic $p \neq 0$ and $f \in F[x]$ irreducible. Prove that there exist an irreducible $g \in F[x]$ with no repeated roots and a $k \in \mathbb{N}_{0}$ so that $f(x)=g\left(x^{p^{k}}\right)$. Use this to factor f in its splitting field over F.

Exercise 2. Let $f(x)=x^{p}-x+1 \in \mathbb{F}_{p}[x]$.
a. Show that f has no roots in \mathbb{F}_{p}.
b. Let α be a root of f in some extension of \mathbb{F}_{p}. Show that the set of roots of f is $\left\{\alpha+a \mid a \in \mathbb{F}_{p}\right\}$. Hence the splitting field of f is $K=\mathbb{F}_{p}(\alpha)$.
c. Show that f is irreducible over \mathbb{F}_{p}. [Suggestion: If $f=g h$ is any nontrivial factorization in $\mathbb{F}_{p}[x]$, split g over K and then compute its trace (degree minus one) coefficient to arrive at a contradiction.]

