Exercise 1. Let p be a prime, $q(x) \in \mathbb{Z}_{p^{2}}[x]$ and $a \in \mathbb{Z}_{p^{2}}^{\times}$. Show that $a+p \cdot q(x)$ is a unit in $\mathbb{Z}_{p^{2}}[x]$. [Suggestions: See Exercise 2a of Assignment 1.2. Or use Exercise 3b.]

Exercise 2. Use the algorithm discussed in class to find the inverse of 139 in \mathbb{Z}_{532}.

Exercise 3. Let R be a commutative ring with unity and suppose $b \in R$ is nilpotent.
a. Show that $1 \pm b \in R^{\times}$. [Suggestion: Recall the sum of a geometric series from Calculus II: $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}$. Establish a similar identity in the current setting.]
b. If $a \in R^{\times}$, show that $a \pm b \in R^{\times}$. [Suggestion: Factor out a and use part a.]

