Exercise 1. Let R be a commutative ring. Show that the subset of nonzero non-zero-divisors of R is closed under multiplication.

Exercise 2. Let R be a commutative ring with unity. Show that if R has the Cancellation Property, then R is a domain.

Exercise 3. Let F be a finite field with n elements. Prove that $\alpha^{n-1}=1$ for all $\alpha \in F \backslash\{0\}$.

Exercise 4. Let R be a finite commutative ring with unity. Prove that every nonzero element of R is either a zero-divisor or a unit. Note that this implies every finite domain is a field. [Suggestion: Show that if $a \in R \backslash\{0\}$ is not a zero-divisor, the map $R \backslash\{0\} \rightarrow R \backslash\{0\}$ given by $x \mapsto a x$ is injective.]

Exercise 5. Let R be a ring with unity 1_{R} and consider the equation

$$
\begin{equation*}
x^{2}+x-2=0 \tag{1}
\end{equation*}
$$

where $2=2 \cdot 1_{R}=1_{R}+1_{R}$.
a. Show that if R is a domain, then (1) has at most two solutions. [Suggestion: Factor the polynomial.]
b. Show that if $R=\mathbb{Z}_{10}$, then (1) has exactly 4 solutions.
c. Show that if $R=\mathrm{M}_{2}(\mathbb{R})$, then (1) has infinitely many solutions. [Suggestion: Find one solution and then conjugate it by $\mathrm{GL}_{2}(\mathbb{R})$.]

