

Algebra II Fall 2017

Assignment 3.1 Due September 13

Exercise 1. Let R be a ring with positive characteristic. Prove that if $m \in \mathbb{N}$ has the property that mx = 0 for all $x \in R$, then char $R \mid m$. [Suggestion: Use the division algorithm.]

Exercise 2. Let R be a commutative ring with unity. Prove that char $M_n(R) = \operatorname{char} R$.

Exercise 3. Let *D* be a domain and $P = \{n \cdot 1 \mid n \in \mathbb{Z}\}$ (i.e. *P* consists of all integral multiples of 1). Prove that *P* is a domain. What can you say about the order (number of elements of) of *P*?

Exercise 4. Let R be a commutative ring with unity and let $a_1, a_2, \ldots, a_n \in R$. Show that

$$\langle a_1, a_2, \dots, a_n \rangle = Ra_1 + Ra_2 + \dots + Ra_n = \{r_1a_1 + r_2a_2 + \dots + r_na_n \mid r_i \in R\}$$

is an ideal of R, the *ideal generated by* a_1, a_2, \ldots, a_n .

Exercise 5. Let I be an interval in \mathbb{R} and let C(I) denote the ring of continuous functions on I. Given $S \subseteq I$, let $Z(S) = \{f \in C(I) \mid f(s) = 0 \text{ for all } s \in S\}$. Show that Z(S) is an ideal in C(I).