

Algebra II Fall 2017

Assignment 4.2 Due September 20

Exercise 1. Let R be a commutative ring with prime characteristic p. Prove that the Frobenius map $a \mapsto a^p$ is an endomorphism of R.

Exercise 2. Let

$$R = \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) \middle| a, b \in \mathbb{R} \right\}.$$

- **a.** Show that R is a subring of $M_2(\mathbb{R})$.
- **b.** Show that the map $\phi : \mathbb{C} \to R$ given by

$$a + bi \mapsto \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)$$

is an isomorphism.

Exercise 3. Let R and S be rings, $\phi : R \to S$ a homomorphism.

- **a.** Show that $\phi(R)$ is a subring of S.
- **b.** Show that if R and S have unity and ϕ is surjective, then $\phi(1) = 1$.
- c. Show that if I is an ideal of S, then

$$J = \phi^{-1}(I) = \{ r \in R \, | \, \phi(r) \in I \}$$

is an ideal of R.

Exercise 4. Let $\phi : \mathbb{R} \to \mathbb{R}$ be an automorphism. Let $x, y \in \mathbb{R}$.

- **a.** Show that $\phi(r) = r$ for all $r \in \mathbb{Q}$.
- **b.** Show that if x > 0, then $\phi(x) > 0$. [Suggestion: Every positive element of \mathbb{R} is a square.]
- **c.** Use part **b** to show that if x > y, then $\phi(x) > \phi(y)$.
- **d.** Suppose that $x < \phi(x)$ and choose $r \in \mathbb{Q}$ so that $x < r < \phi(x)$. Use parts **a** and **c** to arrive at a contradiction. A similar contradiction may be reached if $\phi(x) < x$. What does this tell us about ϕ ?