Algebra II

Assignment 5.1

FALL 2017

Exercise 1. Let $n \in \mathbb{N}$. Show that the map $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ given by $a \mapsto a \bmod n$, where a $\bmod n$ denotes the remainder when a is divided by n, is multiplicative.

Exercise 2. Let R and S be commutative rings with unities, $\phi: R \rightarrow S$ an epimorphism and $A \subseteq S$ an ideal.
a. Show that if A is prime, then $\phi^{-1}(A)$ is prime.
b. Show that if A is maximal, then $\phi^{-1}(A)$ is maximal.

Exercise 3. Let R and S be rings and $I \subseteq R, J \subseteq R$ ideals. Use the First Isomorphism Theorem to prove that

$$
(R \oplus S) /(I \oplus J) \cong R / I \oplus S / J
$$

