Exercise 1. Let R be a commutative ring and S a multiplicative subset. Let $q / s, q^{\prime} / s^{\prime}, r / t, r^{\prime} / t^{\prime} \in$ $S^{-1} R$. If $q / s=q^{\prime} / s^{\prime}$ and $r / t=r^{\prime} / t^{\prime}$, prove that

$$
\frac{q}{s}+\frac{r}{t}=\frac{q^{\prime}}{s^{\prime}}+\frac{r^{\prime}}{t^{\prime}} \quad \text { and } \quad \frac{q}{s} \cdot \frac{r}{t}=\frac{q^{\prime}}{s^{\prime}} \cdot \frac{r^{\prime}}{t^{\prime}}
$$

using the definitions of addition and multiplication of fraction equivalence classes. ${ }^{1}$

Exercise 2. Let R be a commutative ring, $S \subseteq R \backslash\{0\}$ a multiplicative set. Suppose that S contains no zero divisors. Let $s \in S$ and define $\varphi_{s}: R \rightarrow S^{-1} R$ by $r \mapsto r s / s$.
a. Prove that $\varphi_{s}=\varphi_{t}$ for any $t \in S$.
b. Prove that φ_{s} is a monomorphism. Thus $S^{-1} R$ contains (a copy of) R.
c. Prove that $\varphi_{s}(t)$ is a unit in $S^{-1} R$ for all $t \in S$. So $S^{-1} R$ is an extension of R in which the elements of S become invertible.

Exercise 3. Let D be a subdomain of a field F. Let $Q=\left\{r s^{-1} \in F \mid r, s \in D, s \neq 0\right\}$. Prove that Q is the smallest subfield of F containing D, i.e. Q is contained in every subfield of F that contains D.

Exercise 4. Let D be a domain and $S \subseteq D \backslash\{0\}$ be a multiplicative set.
a. If $I \subseteq S^{-1} D$ is an ideal, consider the "numerators of I ":

$$
J=\{d \in D \mid \exists s \in S \text { such that } d / s \in I\}
$$

Show that J is an ideal in D.
b. Continuing the notation of part a, show that if J is principal (generated by a single element), then so is I.
c. A domain in which every ideal is principal is called a principal ideal domain (PID). The prototypical example of a PID is \mathbb{Z}. Use parts a and \mathbf{b} to show that if D is a PID, then so is $S^{-1} D$.

[^0]
[^0]: ${ }^{1}$ Have no fear: this isn't nearly as tedious as I remember it being almost 20 years ago.

