Algebra II
Assignment 5.3
FALL 2017

Exercise 1. Let F be a field, $a \in F$ and $f \in F[x]$. We say a is a root of f if $f(a)=0$.
a. Use the Division Algorithm to prove the Factor Theorem: a is a root of f if and only if $f=(x-a) g$ for some $g \in F[x]$.
b. Use induction to show that if a is a root of f then there is a unique $m \in \mathbb{N}$ so that $f=(x-a)^{m} h$, where $h \in F[x]$ and $h(a) \neq 0$. The integer m is called the multiplicity of the root a.

Exercise 2. Let F be a field and $a \in F$. Use the "evaluation at a " map and the First Isomorphism Theorem to show that $F[x] /\langle x-a\rangle \cong F$. Conclude that $\langle x-a\rangle$ is a maximal ideal in $F[x]$.

Exercise 3. If R is a commutative ring and P is a prime ideal in R, show that $P[x]$ is a prime ideal in $R[x]$.

