Algebra II

Assignment 6.2

FALL 2017
Due October 4

Let R be a commutative ring. Given $a, b \in R$, we say that $d \in R$ is a greatest common divisor (GCD) of a and b provided:
(i) $d \mid a$ and $d \mid b$;
(ii) if $c \in R, c \mid a$ and $c \mid b$, then $c \mid d$.

Exercise 1. Show that if R is a PID ${ }^{1}$, then every pair of elements $a, b \in R$ has a GCD $d \in R$ and that the analogue of Bézout's Lemma holds: there exist $r, s \in R$ so that $r a+s b=d$. [Suggestion: Consider the ideal $\langle a, b\rangle$.]

Exercise 2. Prove that if R is a domain, then GCDs are unique up to unit multiples.

Exercise 3. Show that the polynomial $x^{4}+4$ is reducible over \mathbb{R} by factoring it.

[^0]
[^0]: ${ }^{1}$ Recall that R is called a principal ideal domain (PID) if it is a domain in which every ideal is principal, i.e. generated by a single element.

