D

Algebra II Fall 2017

Assignment 6.2 Due October 4

Let R be a commutative ring. Given $a, b \in R$, we say that $d \in R$ is a greatest common divisor (GCD) of a and b provided:

- (i) d|a and d|b;
- (ii) if $c \in R$, c|a and c|b, then c|d.

Exercise 1. Show that if R is a PID¹, then every pair of elements $a, b \in R$ has a GCD $d \in R$ and that the analogue of Bézout's Lemma holds: there exist $r, s \in R$ so that ra + sb = d. [Suggestion: Consider the ideal $\langle a, b \rangle$.]

Exercise 2. Prove that if R is a domain, then GCDs are unique up to unit multiples.

Exercise 3. Show that the polynomial $x^4 + 4$ is reducible over \mathbb{R} by factoring it.

¹Recall that R is called a *principal ideal domain* (PID) if it is a domain in which every ideal is principal, i.e. generated by a single element.