Exercise 1. Which of the following polynomials are irreducible over \mathbb{Q} ?
a. $x^{5}+9 x^{4}+12 x^{2}+6$
b. $x^{4}+x+1$
c. $x^{4}+x^{2}+2$
d. $x^{5}+5 x^{2}+1$
e. $\frac{5}{2} x^{5}+\frac{9}{2} x^{4}+15 x^{3}+\frac{3}{7} x^{2}+6 x+\frac{3}{14}$

Exercise 2. Let p be a prime number. Determine the number of quadratic polynomials of the form $x^{2}+a x+b$ that are irreducible over \mathbb{F}_{p}.

Exercise 3. In an integral domain, show that a and b are associates if and only if $\langle a\rangle=\langle b\rangle$.

Exercise 4. Show that 21 does not factor uniquely as a product of irreducibles in $\mathbb{Z}[\sqrt{-5}]$.

Exercise 5. In a ring R a descending chain of ideals is a sequence of ideals in R satisfying

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq I_{4} \supseteq \cdots .
$$

We say that R satisfies the descending chain condition (DCC) if every descending chain of ideals in R stabilizes. A ring satisfying the DCC is called Artinian.

Show that a domain is Artinian if and only if it is a field.

