

## Assignment 7.1 Due October 18

**Exercise 1.** Which of the following polynomials are irreducible over  $\mathbb{Q}$ ?

**a.**  $x^5 + 9x^4 + 12x^2 + 6$  **b.**  $x^4 + x + 1$  **c.**  $x^4 + x^2 + 2$  **d.**  $x^5 + 5x^2 + 1$ **e.**  $\frac{5}{2}x^5 + \frac{9}{2}x^4 + 15x^3 + \frac{3}{7}x^2 + 6x + \frac{3}{14}$ 

**Exercise 2.** Let p be a prime number. Determine the number of quadratic polynomials of the form  $x^2 + ax + b$  that are irreducible over  $\mathbb{F}_p$ .

**Exercise 3.** In an integral domain, show that a and b are associates if and only if  $\langle a \rangle = \langle b \rangle$ .

**Exercise 4.** Show that 21 does not factor uniquely as a product of irreducibles in  $\mathbb{Z}[\sqrt{-5}]$ .

**Exercise 5.** In a ring R a descending chain of ideals is a sequence of ideals in R satisfying

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \supseteq \cdots$$
.

We say that R satisfies the *descending chain condition* (DCC) if every descending chain of ideals in R stabilizes. A ring satisfying the DCC is called *Artinian*.

Show that a domain is Artinian if and only if it is a field.