

 $\begin{array}{c} {\rm Algebra} \ {\rm II} \\ {\rm Fall} \ 2017 \end{array}$

Assignment 7.2 Due October 18

Exercise 1. Suppose that $n \in \mathbb{Z}$ is not a perfect square. Let $\mathbb{Q}(\sqrt{n}) = \{a + b\sqrt{n} \mid a, b \in \mathbb{Q}\}$. Show that the function $N : \mathbb{Q}(\sqrt{n}) \to \mathbb{Q}$ given by $N(a + b\sqrt{n}) = a^2 - nb^2$ is multiplicative.

Exercise 2. Let R be a ring and M an R-module. Show that $r0_M = 0_M$ and $0_R m = 0_M$ for all $r \in R$ and $m \in M$.

Exercise 3. Let R be a commutative ring, M an R-module and $S \subseteq M$. Show that

 $\operatorname{Ann}(S) = \{ r \in R \, | \, rm = 0 \text{ for all } m \in S \},\$

the annihilator of S, is an ideal in R.