Algebra II
Assignment 7.2
FALL 2017

Exercise 1. Suppose that $n \in \mathbb{Z}$ is not a perfect square. Let $\mathbb{Q}(\sqrt{n})=\{a+b \sqrt{n} \mid a, b \in \mathbb{Q}\}$. Show that the function $N: \mathbb{Q}(\sqrt{n}) \rightarrow \mathbb{Q}$ given by $N(a+b \sqrt{n})=a^{2}-n b^{2}$ is multiplicative.

Exercise 2. Let R be a ring and M an R-module. Show that $r 0_{M}=0_{M}$ and $0_{R} m=0_{M}$ for all $r \in R$ and $m \in M$.

Exercise 3. Let R be a commutative ring, M an R-module and $S \subseteq M$. Show that

$$
\operatorname{Ann}(S)=\{r \in R \mid r m=0 \text { for all } m \in S\}
$$

the annihilator of S, is an ideal in R.

