

Algebra II Fall 2017

Assignment 7.3 Due October 18

Exercise 1. Let *R* be a ring and *M* an *R*-module. Let $A, B \subset M$ be linearly independent and disjoint. Show that $S = A \cup B$ is linearly independent if and only if $\text{Span}(A) \cap \text{Span}(B) = \{0\}$.

Exercise 2. Let R be a ring and M an R-module. Suppose that $\mathcal{C} = \{X_{\alpha}\}$ is a *chain* of linearly independent subsets of M, i.e. if $X_{\alpha}, X_{\beta} \in \mathcal{C}$, then $X_{\alpha} \subseteq X_{\beta}$ or $X_{\beta} \subseteq X_{\alpha}$.

- **a.** Show that if $n \ge 2$ and $X_{\alpha_1}, X_{\alpha_2}, \ldots, X_{\alpha_n} \in \mathcal{C}$, then there is a k so that $X_{\alpha_i} \subseteq X_{\alpha_k}$ for all *i*. [Suggestion: Induct on n.]
- **a.** Show that $\bigcup_{X \in \mathcal{C}} X$ is linearly independent.

Exercise 3. Let V be a vector space over F. Show that if S is a maximal linearly independent subset of V, then S spans V, and is consequently a basis for V. Where does your proof break down if F is merely a commutative ring with unity? [Suggestion: Let $v \in V$. If $v \notin S$, then $S \cup \{v\}$ must be linearly dependent, by maximality of S. Use this to express v in terms of S.]