Algebra II
Assignment 8.2
FALL 2017

Exercise 1. Let V be a vector space over F with subspaces U and W. Show that $U \cap W$ and $U+W=\{u+w \mid u \in U, w \in W\}$ are subspaces of V.

Exercise 2. Let V be a vector space over F with finite dimensional subspaces U and W.
Prove that

$$
\operatorname{dim} U+\operatorname{dim} W=\operatorname{dim}(U+W)+\operatorname{dim} U \cap W
$$

[Suggestion: Begin with a basis X of $U \cap W$ and complete it to bases Y and Z for U and W, respectively. Show that $X^{\prime}=X \cup(Y \backslash X) \cup(Z \backslash X)$ is a basis for $U+W$.]

Exercise 3. Let K / \mathbb{Q} be a field extension. Show that $\{\sqrt{2}, \sqrt{3}\} \subset K$ if and only if $\sqrt{2}+\sqrt{3} \in K$.

