Exercise 1. Find a polynomial $f(x) \in \mathbb{Q}[x]$ so that $\mathbb{Q}(\sqrt{1+\sqrt{5}})$ is isomorphic to $\mathbb{Q}[x] /\langle f\rangle$. Be sure to verify that f is irreducible over \mathbb{Q}.

Exercise 2. Let F be a field of characteristic p and let $f(x)=x^{p}-a \in F[x]$. Show that f is irreducible over F or splits in F. [Suggestion: Remember that $(a+b)^{p}=a^{p}+b^{p}$ in characteristic p.]

Exercise 3. Find $a, b, c \in \mathbb{Q}$ so that

$$
\frac{1+\sqrt[3]{4}}{2-\sqrt[3]{2}}=a+b \sqrt[3]{2}+c \sqrt[3]{4}
$$

Exercise 4. Let K / F be fields and $S, T \subseteq K$. Prove that $F(S)(T)=F(S \cup T)$.

