Algebra II
Assignment 9.2
FALL 2017

Exercise 1. Let p and q be distinct primes. Show that $x^{2}-q$ is irreducible over $\mathbb{Q}(\sqrt{p})$.

Exercise 2. Determine the splitting field of $x^{3}+2 x+1$ over $\mathbb{F}_{3}=\mathbb{Z} / 3 \mathbb{Z}$.

Exercise 3. Show that $f=x^{3}+x+1 \in \mathbb{Q}[x]$ is irreducible. Then according to Theorem 20.3 , if α denotes any of its roots, we know that

$$
\mathbb{Q}(\alpha)=\left\{a+b \alpha+c \alpha^{2} \mid a, b, c \in \mathbb{Q}\right\} .
$$

Therefore $\alpha^{-1}, \alpha^{-2}, \alpha^{5}$ and α^{47} can all be expressed in the form $a+b \alpha+c \alpha^{2}$ with $a, b, c \in \mathbb{Q}$. Find a, b and c in each case.

