

 $\begin{array}{c} {\rm Algebra} \ {\rm II} \\ {\rm Fall} \ 2017 \end{array}$

Assignment 9.3 Due November 1

Exercise 1. Let F be a field and $f \in F[x]$. Suppose K is a splitting field of f over F and $\alpha \in K$ is a root of f. Let $L = F(\alpha)$, so that we have K/L/F. Write $f = (x - \alpha)g$ in L[x]. Show that K is a splitting field of g over L.

Exercise 2. Let F be a field. Recall that two polynomials in F[x] are called *relatively* prime if they have no non-constant factors in F[x] in common (i.e. they have no common factor in F[x] of positive degree). Prove that if $f, g \in F[x]$ are relatively prime, then they are relatively prime in K[x] for any extension field K/F.

Exercise 3. Let F be a field, $f \in F[x]$ and $a, b \in F$ with $a \neq 0$. Show that f(x) and f(ax + b) have the same splitting field over F.