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1 Modules

Definition 1. A (left) R-module is a triple (R,M, ·) consisting of a ring R, an (additive) abelian group M
and a binary operation · : R ×M → M (simply written as r ·m = rm) that for all r, s ∈ R and m,n ∈ M
satisfies

• r(m+ n) = rm+ rn ;

• (r + s)m = rm+ sm ;

• r(sm) = (rs)m.

If R has unity we also require that 1m = m for all m ∈M . If R = F , a field, we call M a vector space (over
F ). N

Remark 1. One can show that as a consequence of this definition, the zeros of R and M both “act like
zero” relative to the binary operation between R and M , i.e. 0Rm = 0M and r0M = 0M for all r ∈ R and
m ∈M . H

Example 1. Let R be a ring.

• R is an R-module using multiplication in R as the binary operation.

• Every (additive) abelian group G is a Z-module via n · g = ng for n ∈ Z and g ∈ G. In fact, this is the
only way to make G into a Z-module. Since we must have 1 · g = g for all g ∈ G, one can show that
n · g = ng for all n ∈ Z. Thus there is only one possible Z-module structure on any abelian group.

• Rn = R⊕R⊕ · · · ⊕R︸ ︷︷ ︸
n times

is an R-module via

r(a1, a2, . . . , an) = (ra1, ra2, . . . , ran).

• Mn(R) is an R-module via
r(aij) = (raij).

• R[x] is an R-module via

r
∑
i

aix
i =

∑
i

raix
i.

• Every ideal in R is an R-module.

• If R is a subring of S, then S is an R-module using the multiplication in S as the binary operation.

• If ϕ : R→ S is a ring homomorphism, then S is an R-module via

r · s = ϕ(r)s.
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– This generalizes the previous example in which ϕ is just the inclusion map.

– Let F be a field and A ∈ Mn(F ). Define ϕA : F [x] → Mn(F ) by ϕA(f) = f(A). The structure
of the F [x]-module obtained from this homomorphism is closely related to the so-called canonical
forms of A.

• If M is an R-module and I is an ideal in R so that IM = {0}, i.e. am = 0 for all a ∈ I and m ∈M (I
annihilates M), then one can show that for r ∈ R and m ∈M

(r + I)m = rm

is a well-defined binary operation of R/I on M , and that it makes M into an R/I-module.

�

2 Submodules

Definition 2. Let M be an R-module, N ⊆M . N is an R-submodule of M if

• N is a subgroup of M (iff N 6= ∅ and m− n ∈ N for all m,n ∈ N) ;

• rn ∈ N for all r ∈ R, n ∈ N .

So N is itself an R-module under the restriction of the binary operation to N × R. If R = F , a field, a
submodule is called a subspace. N

Example 2. Let R be a ring.

• If G is an (additive) abelian group (Z-module), the Z-submodules of G are just the subgroups.

• Every ideal in R is an R-submodule of R.

• The upper triangular matrices Un(F ) = {(aij) | aij = 0 if i > j} form an R-submodule of Mn(R).

• The set R⊕ {0} ⊕ {0} ⊕ · · · ⊕ {0} = {(a, 0, 0, . . . , 0) | a ∈ R} is an R-submodule of Rn. So is

{(a1, a2, . . . , an) ∈ Rn | a1 + a2 + · · ·+ an = 0}.

• If M is an R-module and N is an R-submodule of M , then the (additive) coset space M/N has the
structure of an abelian group. It is not difficult to show that for r ∈ R and m ∈M the operation

r · (m+N) = rm+N

is well-defined and makes M/N into an R-module, the quotient module.

�

Definition 3. If R is a ring with unity, M is an R-module and X ⊆M , the submodule generated by X is

〈X〉 = RX =

{
n∑

i=1

rixi

∣∣∣∣∣ n ∈ N, ri ∈ R, xi ∈ X

}
.

The expression

n∑
i=1

rixi is called an R-linear combination of the xi. So 〈X〉 is the set of all R-linear com-

binations of elements of X. When R = F , a field, we write 〈X〉 = Span(X) and call it the span of X. If
N ⊆M is a submodule, we say N is finitely generated if N = 〈X〉 for some finite set X ⊆M . N
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Remark 2. Note that since R has unity, X ⊆ 〈X〉. H

Remark 3. If X = {x1, x2, . . . , xN} is finite, then any linear combination of a subset of X can be written
as a linear combination of the whole set X simply by inserting terms with zero coefficients. That is

〈x1, x2, . . . , xN 〉 =

{
N∑
i=1

rixi

∣∣∣∣∣ ri ∈ R
}
.

H

Remark 4. If M is an R-module, N is a submodule and X ⊆ N , then 〈X〉 ⊆ N . H

Example 3. Let R be a ring with unity.

• Rn is finitely generated as an R-module by the elements ei = (0, 0, . . . , 1, . . . , 0) (the 1 occurs in the
ith coordinate), 1 ≤ i ≤ n.

• Mn(R) is finitely generated as an R-module by the matrices Ek` = (δikδj`) (here δab = 0 if a 6= b and
δaa = 1), 1 ≤ i, j ≤ n.

• R[x] is not a finitely generated R-module. If X = {f1, f2, . . . , fn} ⊂ R[x] then any g ∈ 〈X〉 has the
form

g =

n∑
i=1

rifi

whose degree is bounded by M = maxi{deg fi}. Hence 〈X〉 6= R[x].

• If we interpret the empty sum as 0, then 〈∅〉 = {0}.

�

3 Module Homomorphisms

Although we won’t necessarily need it later, we include this section in the interest of completeness.

Definition 4. Let R be a ring and M and N be R-modules. A map f : M → N is an R-module
homomorphism if for all r ∈ R and m,n ∈M :

• f(rm) = rf(m);

• f(m+ n) = f(m) + f(n).

N

So an R-module homomorphism is a homomorphism of the underlying abelian groups that respects the
action(s) of R on them. R-module epimorphism, monomorphism, isomorphism and endomorphism mean the
usual things. If R = F , a field, a module homomorphism is called a linear transformation.

Example 4.Let R be a ring.

• If M is an R-module and N is an R-submodule of M , then the map m 7→ m + N is an R-module
homomorphism M →M/N .

• If M and N are R-modules, M = 〈X〉 and f : M → N is an R-module epimorphism, then N = 〈f(X)〉.

• The map πi : Rn → R given by πi(r1, r2, . . . , rn) = ri is an R-module epimorphism.
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The most important general result about homomorphisms for us is the following.

Theorem 1 (First Isomorphism Theorem for Modules). Let R be a ring, M and N be R-modules, and
f : M → N an R-module homomorphism. Then

ker f = f−1({0}) and im f = f(M)

are R-submodules of M and N , respectively. The map f given by m + ker f 7→ f(m) is a well-defined
R-module isomorphism f : M/ ker f → im f .

Proof. Exercise.

4 Linear Independence and Bases

Definition 5. Let M be an R-module, X ⊆ M . We say X is linearly independent if for all n ∈ N and
distinct x1, x2, . . . , xn ∈ X, and r1, r2, . . . , rn ∈ R,

n∑
i=1

rixi = 0 ⇒ ri = 0 for all i.

If X is not linearly independent, we say that X is linearly dependent. N

Remark 5. Let M be an R-module.

• If X = {x1, x2, . . . , xm} is finite, then X is linearly independent if and only if

m∑
i=1

rixi = 0 ⇒ ri = 0 for all i,

i.e. we only need consider linear combinations of the entire set. This is because linear combinations of
subsets can be viewed as linear combinations of the entire set simply by inserting zero coefficients as
necessary.

• An infinite set X is linearly independent if and only if every finite subset is.

• If 0 ∈ X, then X is linearly dependent.

• ∅ is vacuously linearly independent.

H

Lemma 1. If V is a vector space over F , then 0 6∈ X ⊆ V is linearly dependent if and only if there are
distinct z, x1, x2, . . . , xn ∈ X and a1, a2, . . . , an ∈ F so that

z =

n∑
i=1

aixi. (1)

Proof. To see this, suppose that (1) holds. Then

−z +

n∑
i=1

aixi = 0 but − 1 6= 0 (regardless of the ai),
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proving X is dependent. Conversely, if we assume X is linearly dependent, then there must be n ∈ N0,
distinct x0, x1, . . . , xn ∈ X and b0, b1, . . . , bn ∈ F , not all zero, so that

n∑
i=0

bixi = 0.

If n = 0 then b0x0 = 0 and b0 6= 0. As F is a field, we can multiply by b−10 to obtain x0 = 0, which is
impossible. So n ≥ 1. Relabelling if necessary, we can assume b0 6= 0. Then, again since F is a field,

x0 =

n∑
i=1

(−b−10 bi)xi

and we obtain (1) by setting z = x0.

Our main interest in linear independence is the formulation of the following definition.

Definition 6. Let R be a ring with unity and M an R-module. We say X ⊆M is a basis for M if

• 〈X〉 = M ;

• X is linearly independent.

If M has a basis X we say it is free (on X). N

Example 5. Let R be a ring with unity.

• Rn is free on the set X = {ei | 1 ≤ i ≤ n}.

• More generally, RS =
∐

s∈S R is free on the set X = {es | s ∈ S}, where es(s) = 1 and es(t) = 0 for all
t ∈ S \ {s}.

• R[x] is free on the powers of x, i.e. X = {1, x, x2, . . .}.

• Let G be an (additive) abelian group viewed as a Z-module as above. If |G| = n ∈ N, then G is not
free, since n 6= 0 but ng = 0 for all g ∈ G. More generally, if the torsion subgroup

Tor(G) = {g ∈ G |ng = 0 for some n ∈ N}

is nonzero, then G is not a free Z-module.

• Still more generally, if D is a domain, M is a D-module and

TorD(M) = {m ∈M | am = 0 for some nonzero a ∈ D}

is nonzero, then M is not a free D-module. This and the preceding example follow from the next result.

�

Lemma 2. Let R be a ring with unity and M a free R-module with basis X. Then for each m ∈ M \ {0}
there exist unique (up to order) distinct x1, x2, . . . , xn ∈ X and unique nonzero r1, r2, . . . , rn ∈ R so that

m =

n∑
i=1

rixi. (2)

Proof. That such an expression exists follows from the fact that 〈X〉 = M . Suppose m =

m∑
j=1

sjyj is another

such expression. Let A = {x1, x2, . . . , xn}, B = {y1, y2, . . . , ym}, A′ = A \ B, B′ = B \ A and C = A ∩ B.
Relabel A and B so that A ∩B occurs first in both, in the same order (i.e. x1 = y1, x2 = y2, etc.). Then

0 = m−m =
∑

xi∈A′

rixi +
∑

xi=yi∈C
(ri − si)xi +

∑
yj∈B′

(−sj)yj .

Since X is linearly independent and ri, sj 6= 0, we must have A′ = B′ = ∅, i.e. A = B = C, and ri = si for
all i.
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Recall that ∐
x∈X

R = {α :X → R |α(x) = 0 for all but finitely many x ∈ X}.

In the situation described in Lemma 2, define CX(m) ∈
∐

x∈X R by CX(m)(xi) = ri and CX(m)(x) = 0
otherwise. We will call CX(m) the coordinates of m relative to X or the X-coordinates of m.

Lemma 3. Let R be a ring with unity and M a free R-module with finite basis X = {x1, x2, . . . , xN}. Then
for each m ∈M there exist unique r1, r2, . . . , rN ∈ R so that

m =

N∑
i=1

rixi. (3)

We call CX(m) = (r1, r2, . . . , rN ) ∈ RN the coordinates of m relative to X.

Proof. As above, but simpler because we are allowing zero coefficients. Since 〈X〉 = M and X is finite, by
Remark 3 any m ∈M can be written

m =

N∑
i=1

rixi, ri ∈ R.

Suppose we also have

m =

N∑
i=1

sixi, si ∈ R.

Subtracting these gives

0 =

N∑
i=1

(ri − si)xi ⇒ ri − si = 0 for all i ⇒ ri = si for all i

by linear independence of X. Hence the ri are unique, as claimed.

In the setting of the Lemma 3, notice that since N is finite, RN =
∐

x∈X R. Therefore the coordinate
“vector” CX(m) ∈

∐
x∈X R in any case and satisfies

m =
∑
x∈X

CX(m)(x) · x,

where its understood that terms with zero coefficients are omitted from the sum when X is infinite. In fact,∐
x∈X R is an R-module under coordinate-wise operations, and, based on what we have shown, it is not hard

to show that CX : M →
∐

x∈X R is an R-module isomorphism.

Remark 6. Free R-modules are the beginning of general structure theory for R-modules. If M is an
R-module generated by a subset X, define ϕ :

∐
x∈X R→M by

α 7→
∑
x∈X

α(x)x.

One can readily show this is a module epimorphism. Hence every module over a ring with unity is the
homomorphic image of a free module (one can always take X = M). The kernel of ϕ is called the first syzygy
module of M relative to X:

SyzM (X) = kerϕ.

By the first isomorphism theorem

M ∼=
∐
x∈X

R

/
SyzM (X),

i.e. when R has unity, every R-module is isomorphic to a quotient of a free R-module. H

An extremely useful property of a free R-modules is the ability to “freely” construct homomorphisms
from them.
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Theorem 2. Let R be a ring with unity and M a free R-module with basis X. Let N be any R-module
and f : X → N any function. Then there exists a unique R-module homomorphism f̂ : M → N so that
f̂(x) = f(x) for all x ∈ X.

Proof. If such an f̂ exists, then for any m ∈M it must satisfy

f̂(m) = f̂

(∑
x∈X

CX(m)(x) · x

)
=
∑
x∈X

CX(m)(x) · f̂(x) =
∑
x∈X

CX(m)(x) · f(x), (4)

and is therefore unique, by the uniqueness of coordinates. So it suffices to prove that the right-hand side of
(4) defines an R-module homomorphism. This follows from the fact that the coordinate map CX is R-linear.
The details are left to the reader.

On to the existence of bases.

Lemma 4. Let R be a ring with unity and M an R-module. Every linearly independent subset of M is
contained in a maximal linearly independent subset.

Proof. This is a standard application of Zorn’s Lemma.

Theorem 3. Let X be a maximal linearly independent subset of a vector space V over F . Then X is a basis
for V .

Proof. We only need to show that Span(X) = V . To that end, let v ∈ V . If v ∈ X, then v ∈ 〈X〉 so there’s
nothing to prove. So suppose v 6∈ X. Then, by maximality, Y = X ∪{v} must be linearly dependent. Hence
there exist distinct x0, x1, . . . xn ∈ Y and a0, a1, . . . , an ∈ F , not all zero, so that

0 =

n∑
j=0

ajxj .

As in an earlier argument, we cannot have n = 0, so n ≥ 1. If xj ∈ X for all j, this contradicts linear
independence of X. So, without loss of generality, x0 = v and xj ∈ X for j ≥ 1. If a0 = 0 we again
contradict X’s linear independence (as n ≥ 1), so a0 6= 0 and is therefore invertible in F . Thus

v =

n∑
j=1

(−a−10 aj)xj ∈ Span(X),

which is what we needed to show.

Corollary 1. Every vector space has a basis. In particular any linearly independent set of vectors is contained
in a basis.

Lemma 5. Let R be a ring with unity and M a free R-module with bases X and Y . For any a ∈ X there
exists b ∈ Y so that CX(b)(a) 6= 0 (equivalently, b 6∈ 〈X \ {a}〉).

Proof. Suppose not. Then there is an a ∈ X so that Y ⊆ 〈X \ {a}〉. Thus M = 〈Y 〉 ⊆ 〈X \ {a}〉 ⊆ M and
hence M = 〈X \ {a}〉. In particular, a ∈ 〈X \ {a}〉. By Lemma 1, this means X is linearly dependent, a
contradiction. So the conclusion of the lemma holds.

Lemma 6 (The Replacement Lemma). Let V be a vector space over a field F with bases X and Y . For
every a ∈ X, there is a b ∈ Y so that X ′ = (X \ {a}) ∪ {b} is a basis for V .

Proof. Let a ∈ X and use Lemma 5 to choose b ∈ Y with α = CX(b)(a) 6= 0. Then

a = α−1b−
∑

x∈X\{a}

(α−1CX(b)(x)) · x ∈ Span(X ′).

Hence X ⊆ Span(X ′) so that M = Span(X) ⊆ Span(X ′) ⊆M . Consequently Span(X ′) = M .
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It remains to show that X ′ is linearly independent. Let S ⊆ X ′ be finite. If b 6∈ S, then S ⊂ X and so∑
s∈S

rss = 0 ⇒ rs = 0 for all s ∈ S

because X is linearly independent. If b ∈ S, write S = {b} ∪ S′ with S′ ⊆ X \ {a}. Suppose

βb+
∑
s∈S′

rss = 0.

If β 6= 0, this yields

b =
∑
s∈S′

(−β−1rs)s ∈ 〈X \ {a}〉,

contradicting the fact that CX(b)(a) 6= 0. So β = 0 and we are left with∑
s∈S′

rss ⇒ rs = 0 for all s ∈ S′,

again because since S′ ⊆ X, a linearly independent set. So in any case, the only linear combinations of
elements of X ′ that are equal to 0 are trivial combinations, and X ′ is linearly independent.

Theorem 4. Let V be a vector space over a field F . If V has a finite basis, then all its bases are finite and
have the same size.

Proof. Let X = {x1, x2, . . . , xn} be a finite basis for V and let Y be any other basis. By the Replacement
Lemma, we may successively replace x1, x2, . . . with y1, y2, . . . ∈ Y while still maintaining a basis for V .
Since the lemma guarantees we can do this for each xi in turn, it must be the case that |Y | ≥ n. But since
X ′ = {y1, y2, . . . yn} spans V , if X ′ ⊂ Y then Y isn’t linearly independent. So X ′ = Y and |Y | = |X| = n.

Remark 7. Theorem 4 shows that if a vector space has an infinite basis, all its bases are infinite. One can
prove more, specifically that if a vector space has an infinite basis, then all its bases are infinite and have
the same cardinality. This cardinality is the dimension. See [1]. H

Definition 7. Let V be a vector space with a finite basis X. We call |X| the dimension of V , write
dimV = |X| and call V a finite dimensional vector space. Theorem 4 shows that notion of dimension is
well-defined, i.e. does not depend on the basis chosen. N

Remark 8. Let V be a finite dimensional vector space of dimension n.

• If n = 0 then ∅ is the only basis of V .

• If S ⊆ V is linearly independent, then by Corollary 1 S is contained in some basis of V . Hence |S| ≤ n.

• If S ⊆ V , then any maximal linearly independent T ⊆ S will satisfy Span(T ) = Span(S) (exercise). So
if Span(S) = V , then S must contain a basis of V , and hence |S| ≥ n.

H

Example 6. Let F be a field.

• For n ∈ N, dimFn = n since {ei | 1 ≤ i ≤ n} is a basis.

• For n ∈ N, dim Mn(F ) = n since {Eij | 1 ≤ i, j ≤ n} is a basis.

• For n ∈ N0 let Fn[x] = {f ∈ F [x] | deg f ≤ n} is a vector space over F of dimension n + 1, since
{1, x, x2, . . . , xn} is a basis.
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Finally, we establish an essential result about linear transformations of finite dimensional vector spaces.

Lemma 7. Let V be a finite dimensional vector space and W a subspace.

• dimW ≤ dimV with equality if and only if V = W .

• dimV/W = dimV − dimW .

Proof. Let Y be a basis for W . Then Y is linearly independent in V , so it is contained in a basis of V by
Corollary 1. Thus dimW = |Y | ≤ dimV . If the dimensions agree, Y must already be a basis for V and
hence W = Span(Y ) = V .

Regarding the second result, it clearly holds if V = W , so we assume W ⊂ V . Let Y be a basis for W
and, as above, complete it to a basis X = Y ∨X ′ for V . We claim that the cosets x+W with x ∈ X ′ form
a basis for V/W . Establishing this claim will prove the second part of the lemma.

Let v ∈ V and write

v =
∑
x∈X

cX(v)(x) · x =
∑
y∈Y

cX(v)(y) · y︸ ︷︷ ︸
in W

+
∑
x∈X′

cX(v)(x) · x,

which shows that
v +W =

∑
x∈X′

cX(v)(x) · (x+W ).

Hence {x+W |x ∈ X ′} spans V/W . As far as linear independence goes, suppose

W =
∑
x∈X′

ax(x+W ) =

(∑
x∈X′

axx

)
+W.

Then ∑
x∈X′

axx ∈W ∩ 〈X ′〉 = 〈Y 〉 ∩ 〈X ′〉 = {0}

and hence ax = 0 for all x, since X ′ is linearly independent. The set {x+W |x ∈ X ′} is thererfore linearly
independent, finishing the proof.

Definition 8. Let T : V →W be a linear transformation of vector spaces over F . The null space of T is

nullT = kerT.

The rank of T is
rankT = dim imT.

N

We can now state and prove one of the fundamental theorems of undergraduate linear algebra.

Theorem 5. Let T : V →W be a linear transformation of vector spaces over F and suppose that V is finite
dimensional. Then

dimV = dim nullT + rankT.

Proof. According to the First Isomorphism Theorem, there is an isomorphism T : V/ nullT → imT . Since
isomorphisms preserve dimension (exercise), by Lemma 7 we have

rankT = dim imT = dimV/ nullT = dimV − dim nullT,

which is equivalent to the conclusion of the theorem.
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