On the unit group of $\mathbb{Z}_{4}[x]$.

R. C. Daileda

August 28, 2017

We begin with the statement and proof of our first main result.
Theorem 1. The unit group of $\mathbb{Z}_{4}[x]$ is

$$
\mathbb{Z}_{4}[x]^{\times}=\left\{2 q(x)+1 \mid q(x) \in \mathbb{Z}_{4}[x]\right\}
$$

Every element of $\mathbb{Z}_{4}[x]^{\times}$is its own inverse, i.e. the exponent of $\mathbb{Z}_{4}[x]^{\times}$is 2.
Proof. First note that, since all polynomials have coefficients in \mathbb{Z}_{4}, for any $q(x) \in \mathbb{Z}[x]$ we have

$$
(2 q(x)+1)^{2}=4 q(x)^{2}+4 q(x)+1=1
$$

which proves that $2 q(x)+1 \in \mathbb{Z}_{4}[x]^{\times}$. Conversely, let $p(x), q(x) \in \mathbb{Z}_{4}[x]^{\times}$with $p(x) q(x)=1$. By putting each coefficient in either the form $2 k$ or $2 k+1$, it is not difficult to see that we may write

$$
\begin{align*}
p(x) & =2 a(x)+b(x) \\
q(x) & =2 c(x)+d(x) \tag{1}
\end{align*}
$$

where $a(x), b(x), c(x), d(x) \in \mathbb{Z}_{4}[x]$ and the (nonzero) coefficients of $b(x)$ and $d(x)$ are all 1 . Multiplying these expressions together gives

$$
\begin{equation*}
2(a(x) d(x)+b(x) c(x))+b(x) d(x)=1 \tag{2}
\end{equation*}
$$

If $b(x)$ or $d(x)$ had positive degree, then the leading term of $b(x) d(x)$ would be x^{n} for some $n \in \mathbb{N}$. But then the coefficient of x^{n} on the left hand side of (2) would have the form $2 k+1 \neq 0$, making equation (2) impossible. We conclude, then, that

$$
\begin{align*}
b(x)=d(x) & =1 \tag{3}\\
2(a(x) d(x)+c(x) b(x)) & =0 \tag{4}
\end{align*}
$$

Equation (4) yields

$$
0=2(a(x) d(x)+c(x) b(x))=2(a(x)+c(x)) \Rightarrow 2 a(x)=-2 c(x)=2 c(x)
$$

Returning to (1) we finally find that

$$
p(x)=2 a(x)+1=2 c(x)+1=q(x)
$$

completing the proof.
Theorem 1 shows that we can construct all of the units in $\mathbb{Z}_{4}[x]$ by simply choosing arbitrary polynomials, doubling them and then adding 1 . We use this operation to define a map

$$
\begin{aligned}
\phi: \mathbb{Z}_{4}[x] & \rightarrow \mathbb{Z}_{4}[x]^{\times} \\
q(x) & \mapsto 2 q(x)+1
\end{aligned}
$$

Because of its nature, we can use ϕ to further elucidate the structure of $\mathbb{Z}_{4}[x]$.

Proposition 1. The map ϕ is an epimorphism of abelian groups with kernel $2 \mathbb{Z}_{4}[x]=\left\{2 s(x) \mid s(x) \in \mathbb{Z}_{4}[x]\right\}$.
Proof. We have already established the surjectivity of ϕ. To see that it is operation preserving let $q(x), r(x) \in$ $\mathbb{Z}_{4}[x]$. We then have

$$
\phi(q(x)+r(x))=2(q(x)+r(x))+1=(2 q(x)+1)(2 r(x)+1)=\phi(q(x)) \phi(r(x))
$$

as needed. To prove the statement about the kernel, if $\phi(q(x))=1$, then $2 q(x)=0$. This can only occur if every (nonzero) coefficient of $q(x)$ is 2 . Hence $q(x)=2 s(x)$ for some $s(x) \in \mathbb{Z}_{4}[x]$.

We are now ready for our second main result.
Theorem 2. We have

$$
\mathbb{Z}_{4}[x]^{\times} \cong \bigoplus_{m \in \mathbb{N}} \mathbb{Z}_{2}
$$

Proof. According to Proposition 1

$$
\mathbb{Z}_{4}[x]^{\times} \cong \mathbb{Z}_{4}[x] / \operatorname{ker} \phi=\mathbb{Z}_{4}[x] / 2 \mathbb{Z}_{4}[x] \cong \mathbb{Z}_{2}[x]
$$

Since the latter group is (additively) isomorphic to $\bigoplus_{m \in \mathbb{N}} \mathbb{Z}_{2}$, the result follows.

