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We begin with the statement and proof of our first main result.

Theorem 1. The unit group of Z4[x] is

Z4[x]× = {2q(x) + 1 | q(x) ∈ Z4[x]}.

Every element of Z4[x]× is its own inverse, i.e. the exponent of Z4[x]× is 2.

Proof. First note that, since all polynomials have coefficients in Z4, for any q(x) ∈ Z[x] we have

(2q(x) + 1)2 = 4q(x)2 + 4q(x) + 1 = 1,

which proves that 2q(x) + 1 ∈ Z4[x]×. Conversely, let p(x), q(x) ∈ Z4[x]× with p(x)q(x) = 1. By putting
each coefficient in either the form 2k or 2k + 1, it is not difficult to see that we may write

p(x) = 2a(x) + b(x),

q(x) = 2c(x) + d(x),
(1)

where a(x), b(x), c(x), d(x) ∈ Z4[x] and the (nonzero) coefficients of b(x) and d(x) are all 1. Multiplying
these expressions together gives

2(a(x)d(x) + b(x)c(x)) + b(x)d(x) = 1. (2)

If b(x) or d(x) had positive degree, then the leading term of b(x)d(x) would be xn for some n ∈ N. But
then the coefficient of xn on the left hand side of (2) would have the form 2k + 1 6= 0, making equation (2)
impossible. We conclude, then, that

b(x) = d(x) = 1, (3)

2(a(x)d(x) + c(x)b(x)) = 0. (4)

Equation (4) yields

0 = 2(a(x)d(x) + c(x)b(x)) = 2(a(x) + c(x)) ⇒ 2a(x) = −2c(x) = 2c(x).

Returning to (1) we finally find that

p(x) = 2a(x) + 1 = 2c(x) + 1 = q(x),

completing the proof.

Theorem 1 shows that we can construct all of the units in Z4[x] by simply choosing arbitrary polynomials,
doubling them and then adding 1. We use this operation to define a map

φ : Z4[x]→ Z4[x]×,

q(x) 7→ 2q(x) + 1.

Because of its nature, we can use φ to further elucidate the structure of Z4[x].
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Proposition 1. The map φ is an epimorphism of abelian groups with kernel 2Z4[x] = {2s(x) | s(x) ∈ Z4[x]}.

Proof. We have already established the surjectivity of φ. To see that it is operation preserving let q(x), r(x) ∈
Z4[x]. We then have

φ(q(x) + r(x)) = 2(q(x) + r(x)) + 1 = (2q(x) + 1)(2r(x) + 1) = φ(q(x))φ(r(x))

as needed. To prove the statement about the kernel, if φ(q(x)) = 1, then 2q(x) = 0. This can only occur if
every (nonzero) coefficient of q(x) is 2. Hence q(x) = 2s(x) for some s(x) ∈ Z4[x].

We are now ready for our second main result.

Theorem 2. We have
Z4[x]× ∼=

⊕
m∈N

Z2.

Proof. According to Proposition 1

Z4[x]× ∼= Z4[x]/ kerφ = Z4[x]/2Z4[x] ∼= Z2[x].

Since the latter group is (additively) isomorphic to
⊕

m∈N Z2, the result follows.
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