

PUTNAM SEMINAR FALL 2018

Quiz 0

Problem 1. Find the minimum value of

$$\frac{(x+1/x)^6 - (x^6+1/x^6) - 2}{(x+1/x)^3 + (x^3+1/x^3)}$$

for x > 0.

Problem 2. Evaluate $\sum_{n=0}^{\infty} \operatorname{Arccot}(n^2+n+1)$, where $\operatorname{Arccot} t$ for $t \geq 0$ denotes the number θ in the interval $0 < \theta \leq \pi/2$ with $\cot \theta = t$.

Problem 3. Prove or disprove: If x and y are real numbers with $y \ge 0$ and $y(y+1) \le (x+1)^2$, then $y(y-1) \le x^2$.

Problem 4. Find all real-valued continuously differentiable functions f on the real line such that for all x,

$$(f(x))^{2} = \int_{0}^{x} [(f(t))^{2} + (f'(t))^{2}] dt + 2018.$$

Problem 1. Find the minimum value of

$$\frac{(x+1/x)^6 - (x^6+1/x^6) - 2}{(x+1/x)^3 + (x^3+1/x^3)}$$

for x > 0.

Problem 2. Evaluate $\sum_{n=0}^{\infty} \operatorname{Arccot}(n^2+n+1)$, where $\operatorname{Arccot} t$ for $t \geq 0$ denotes the number θ in the interval $0 < \theta \leq \pi/2$ with $\cot \theta = t$.

Problem 3. Prove or disprove: If x and y are real numbers with $y \ge 0$ and $y(y+1) \le (x+1)^2$, then $y(y-1) \le x^2$.

Problem 4. Find all real-valued continuously differentiable functions f on the real line such that for all x,

$$(f(x))^{2} = \int_{0}^{x} [(f(t))^{2} + (f'(t))^{2}] dt + 2018.$$