

PUTNAM SEMINAR FALL 2018

QUIZ 10 DUE OCTOBER 31

Name:	
Start Time:	
End Time:	

Problem 1. What is the units (i.e., rightmost) digit of

$$\left[\frac{10^{20000}}{10^{100} + 3} \right] ?$$

Problem 2. Prove that for $n \geq 2$,

$$n \text{ terms} \qquad n - 1 \text{ terms}$$

$$2^{2^{\dots^2}} \equiv 2^{2^{\dots^2}} \pmod{n}.$$

Problem 3. Define a positive integer n to be squarish if either n is itself a perfect square or the distance from n to the nearest perfect square is a perfect square. For example, 2016 is squarish, because the nearest perfect square to 2016 is $45^2 = 2025$ and 2025 - 2016 = 9 is a perfect square. (Of the positive integers between 1 and 10, only 6 and 7 are not squarish.)

For a positive integer N, let S(N) be the number of squarish integers between 1 and N, inclusive. Find positive constants α and β such that

$$\lim_{N\to\infty}\frac{S(N)}{N^\alpha}=\beta,$$

or show that no such constants exist.

Problem 4. Let p be an odd prime and let \mathbb{Z}_p denote (the field of) integers modulo p. How many elements are in the set

$${x^2 : x \in \mathbb{Z}_p} \cap {y^2 + 1 : y \in \mathbb{Z}_p}?$$

Problem 1. What is the units (i.e., rightmost) digit of

$$\left\lfloor \frac{10^{20000}}{10^{100} + 3} \right\rfloor ?$$

Problem 2. Prove that for $n \geq 2$,

$$n \underbrace{\text{terms}}_{2^{2^{\dots^2}}} \equiv n - 1 \underbrace{\text{terms}}_{2^{2^{\dots^2}}} \pmod{n}.$$

Problem 3. Define a positive integer n to be squarish if either n is itself a perfect square or the distance from n to the nearest perfect square is a perfect square. For example, 2016 is squarish, because the nearest perfect square to 2016 is $45^2 = 2025$ and 2025 - 2016 = 9 is a perfect square. (Of the positive integers between 1 and 10, only 6 and 7 are not squarish.)

For a positive integer N, let S(N) be the number of squarish integers between 1 and N, inclusive. Find positive constants α and β such that

$$\lim_{N \to \infty} \frac{S(N)}{N^{\alpha}} = \beta,$$

or show that no such constants exist.

Problem 4. Let p be an odd prime and let \mathbb{Z}_p denote (the field of) integers modulo p. How many elements are in the set

$${x^2 : x \in \mathbb{Z}_p} \cap {y^2 + 1 : y \in \mathbb{Z}_p}?$$