Putnam Seminar
FALL 2018

Quiz 2
Due September 5

Name:

Start Time: $\qquad$

End Time: $\qquad$

Problem 1. Let $S$ be a subset of $\{1,2, \ldots, 2 n\}$ with $n+1$ elements. Show that one can choose distinct elements $a, b \in S$ such that $a$ divides $b$.

Problem 2. For a partition $\pi$ of $\{1,2,3,4,5,6,7,8,9\}$, let $\pi(x)$ be the number of elements in the part containing $x$. Prove that for any two partitions $\pi$ and $\pi^{\prime}$, there are two distinct numbers $x$ and $y$ in $\{1,2,3,4,5,6,7,8,9\}$ such that $\pi(x)=\pi(y)$ and $\pi^{\prime}(x)=\pi^{\prime}(y)$.

Problem 3. Let $a_{j}, b_{j}, c_{j}$ be integers for $1 \leq j \leq N$. Assume for each $j$, at least one of $a_{j}$, $b_{j}, c_{j}$ is odd. Show that there exist integers $r, s, t$ such that $r a_{j}+s b_{j}+t c_{j}$ is odd for at least $4 N / 7$ values of $j, 1 \leq j \leq N$.

Problem 4. Prove that, for every set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of real numbers, there exists a non-empty subset $S$ of $X$ and an integer $m$ such that

$$
\left|m+\sum_{s \in S} s\right| \leq \frac{1}{n+1}
$$

Problem 1. Let $S$ be a subset of $\{1,2, \ldots, 2 n\}$ with $n+1$ elements. Show that one can choose distinct elements $a, b \in S$ such that $a$ divides $b$.

Problem 2. For a partition $\pi$ of $\{1,2,3,4,5,6,7,8,9\}$, let $\pi(x)$ be the number of elements in the part containing $x$. Prove that for any two partitions $\pi$ and $\pi^{\prime}$, there are two distinct numbers $x$ and $y$ in $\{1,2,3,4,5,6,7,8,9\}$ such that $\pi(x)=\pi(y)$ and $\pi^{\prime}(x)=\pi^{\prime}(y)$.

Problem 3. Let $a_{j}, b_{j}, c_{j}$ be integers for $1 \leq j \leq N$. Assume for each $j$, at least one of $a_{j}$, $b_{j}, c_{j}$ is odd. Show that there exist integers $r, s, t$ such that $r a_{j}+s b_{j}+t c_{j}$ is odd for at least $4 N / 7$ values of $j, 1 \leq j \leq N$.

Problem 4. Prove that, for every set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of real numbers, there exists a non-empty subset $S$ of $X$ and an integer $m$ such that

$$
\left|m+\sum_{s \in S} s\right| \leq \frac{1}{n+1}
$$

