

## Putnam Seminar Fall 2018

Quiz 2 Due September 5

| Name:       |  |
|-------------|--|
| Start Time: |  |
| End Time:   |  |

**Problem 1.** Let S be a subset of  $\{1, 2, ..., 2n\}$  with n + 1 elements. Show that one can choose distinct elements  $a, b \in S$  such that a divides b.

**Problem 2.** For a partition  $\pi$  of  $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ , let  $\pi(x)$  be the number of elements in the part containing x. Prove that for any two partitions  $\pi$  and  $\pi'$ , there are two distinct numbers x and y in  $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$  such that  $\pi(x) = \pi(y)$  and  $\pi'(x) = \pi'(y)$ .

**Problem 3.** Let  $a_j$ ,  $b_j$ ,  $c_j$  be integers for  $1 \le j \le N$ . Assume for each j, at least one of  $a_j$ ,  $b_j$ ,  $c_j$  is odd. Show that there exist integers r, s, t such that  $ra_j + sb_j + tc_j$  is odd for at least 4N/7 values of j,  $1 \le j \le N$ .

**Problem 4.** Prove that, for every set  $X = \{x_1, x_2, \dots, x_n\}$  of real numbers, there exists a non-empty subset S of X and an integer m such that

$$\left| m + \sum_{s \in S} s \right| \le \frac{1}{n+1}$$

**Problem 1.** Let S be a subset of  $\{1, 2, \dots, 2n\}$  with n+1 elements. Show that one can choose distinct elements  $a, b \in S$  such that a divides b.

**Problem 2.** For a partition  $\pi$  of  $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ , let  $\pi(x)$  be the number of elements in the part containing x. Prove that for any two partitions  $\pi$  and  $\pi'$ , there are two distinct numbers x and y in  $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$  such that  $\pi(x) = \pi(y)$  and  $\pi'(x) = \pi'(y)$ .

**Problem 3.** Let  $a_j, b_j, c_j$  be integers for  $1 \le j \le N$ . Assume for each j, at least one of  $a_j, b_j, c_j$  is odd. Show that there exist integers r, s, t such that  $ra_j + sb_j + tc_j$  is odd for at least 4N/7 values of  $j, 1 \le j \le N$ .

**Problem 4.** Prove that, for every set  $X = \{x_1, x_2, \dots, x_n\}$  of real numbers, there exists a non-empty subset S of X and an integer m such that

$$\left| m + \sum_{s \in S} s \right| \le \frac{1}{n+1}$$