Name:

Start Time: \qquad

End Time: \qquad

Problem 1. Let $x_{0}, x_{1}, x_{2}, \ldots$ be the sequence such that $x_{0}=1$ and for $n \geq 0$,

$$
x_{n+1}=\ln \left(e^{x_{n}}-x_{n}\right)
$$

(as usual, the function is the natural logarithm). Show that the infinite series

$$
x_{0}+x_{1}+x_{2}+\cdots
$$

converges and find its sum.

Problem 2. Define polynomials $f_{n}(x)$ for $n \geq 0$ by $f_{0}(x)=1, f_{n}(0)=0$ for $n \geq 1$, and

$$
\frac{d}{d x} f_{n+1}(x)=(n+1) f_{n}(x+1)
$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

Problem 3. Let $T_{0}=2, T_{1}=3, T_{2}=6$, and for $n \geq 3$,

$$
T_{n}=(n+4) T_{n-1}-4 n T_{n-2}+(4 n-8) T_{n-3} .
$$

The first few terms are

$$
2,3,6,14,40,152,784,5168,40576
$$

Find, with proof, a formula for T_{n} of the form $T_{n}=A_{n}+B_{n}$, where $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are well-known sequences.

Problem 4. Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^{k}-1}$ has the form $\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}$ where $P_{n}(x)$ is a polynomial. Find $P_{n}(1)$.

Problem 1. Let $x_{0}, x_{1}, x_{2}, \ldots$ be the sequence such that $x_{0}=1$ and for $n \geq 0$,

$$
x_{n+1}=\ln \left(e^{x_{n}}-x_{n}\right)
$$

(as usual, the function is the natural logarithm). Show that the infinite series

$$
x_{0}+x_{1}+x_{2}+\cdots
$$

converges and find its sum.

Problem 2. Define polynomials $f_{n}(x)$ for $n \geq 0$ by $f_{0}(x)=1, f_{n}(0)=0$ for $n \geq 1$, and

$$
\frac{d}{d x} f_{n+1}(x)=(n+1) f_{n}(x+1)
$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

Problem 3. Let

$$
T_{0}=2, T_{1}=3, T_{2}=6
$$

and for $n \geq 3$,

$$
T_{n}=(n+4) T_{n-1}-4 n T_{n-2}+(4 n-8) T_{n-3} .
$$

The first few terms are

$$
2,3,6,14,40,152,784,5168,40576 .
$$

Find, with proof, a formula for T_{n} of the form $T_{n}=A_{n}+B_{n}$, where $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are well-known sequences.

Problem 4. Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^{k}-1}$ has the form $\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}$ where $P_{n}(x)$ is a polynomial. Find $P_{n}(1)$.

