

Putnam Seminar Fall 2018 Quiz 3 Due September 12

Name:_____

Start Time:_____

End Time:_____

Problem 1. Let x_0, x_1, x_2, \ldots be the sequence such that $x_0 = 1$ and for $n \ge 0$,

$$x_{n+1} = \ln(e^{x_n} - x_n)$$

(as usual, the function is the natural logarithm). Show that the infinite series

 $x_0 + x_1 + x_2 + \cdots$

converges and find its sum.

Problem 2. Define polynomials $f_n(x)$ for $n \ge 0$ by $f_0(x) = 1$, $f_n(0) = 0$ for $n \ge 1$, and

$$\frac{d}{dx}f_{n+1}(x) = (n+1)f_n(x+1)$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

Problem 3. Let $T_0 = 2, T_1 = 3, T_2 = 6$, and for $n \ge 3$,

$$T_n = (n+4)T_{n-1} - 4nT_{n-2} + (4n-8)T_{n-3}.$$

The first few terms are

2, 3, 6, 14, 40, 152, 784, 5168, 40576.

Find, with proof, a formula for T_n of the form $T_n = A_n + B_n$, where $\{A_n\}$ and $\{B_n\}$ are well-known sequences.

Problem 4. Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^k - 1}$ has the form $\frac{P_n(x)}{(x^k - 1)^{n+1}}$ where $P_n(x)$ is a polynomial. Find $P_n(1)$.

Problem 1. Let x_0, x_1, x_2, \ldots be the sequence such that $x_0 = 1$ and for $n \ge 0$,

$$x_{n+1} = \ln(e^{x_n} - x_n)$$

(as usual, the function is the natural logarithm). Show that the infinite series

$$x_0 + x_1 + x_2 + \cdots$$

converges and find its sum.

Problem 2. Define polynomials $f_n(x)$ for $n \ge 0$ by $f_0(x) = 1$, $f_n(0) = 0$ for $n \ge 1$, and

$$\frac{d}{dx}f_{n+1}(x) = (n+1)f_n(x+1)$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

Problem 3. Let

$$T_0 = 2, T_1 = 3, T_2 = 6,$$

and for $n \geq 3$,

$$T_n = (n+4)T_{n-1} - 4nT_{n-2} + (4n-8)T_{n-3}.$$

The first few terms are

$$2, 3, 6, 14, 40, 152, 784, 5168, 40576.$$

Find, with proof, a formula for T_n of the form $T_n = A_n + B_n$, where $\{A_n\}$ and $\{B_n\}$ are well-known sequences.

Problem 4. Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^{k-1}}$ has the form $\frac{P_n(x)}{(x^{k-1})^{n+1}}$ where $P_n(x)$ is a polynomial. Find $P_n(1)$.