

Putnam Seminar Fall 2018 Quiz 4 Due September 19

Start Time:_____

End Time:_____

Problem 1. Let L_1 and L_2 be distinct lines in the plane. Prove that L_1 and L_2 intersect if and only if, for every real number $\lambda \neq 0$ and every point P not on L_1 or L_2 , there exist points A_1 on L_1 and A_2 on L_2 such that $\overrightarrow{PA_2} = \lambda \overrightarrow{PA_1}$.

Problem 2. A 2×3 rectangle has vertices as (0,0), (2,0), (0,3), and (2,3). It rotates 90° clockwise about the point (2,0). It then rotates 90° clockwise about the point (5,0), then 90° clockwise about the point (7,0), and finally, 90° clockwise about the point (10,0). (The side originally on the x-axis is now back on the x-axis.) Find the area of the region above the x-axis and below the curve traced out by the point whose initial position is (1,1).

Problem 3. Given a point (a, b) with 0 < b < a, determine the minimum perimeter of a triangle with one vertex at (a, b), one on the *x*-axis, and one on the line y = x. You may assume that a triangle of minimum perimeter exists.

Problem 4. Let P be a given (non-degenerate) polyhedron. Prove that there is a constant c(P) > 0 with the following property: If a collection of n balls whose volumes sum to V contains the entire surface of P, then $n > c(P)/V^2$.

Problem 1. Let L_1 and L_2 be distinct lines in the plane. Prove that L_1 and L_2 intersect if and only if, for every real number $\lambda \neq 0$ and every point P not on L_1 or L_2 , there exist points A_1 on L_1 and A_2 on L_2 such that $\overrightarrow{PA_2} = \lambda \overrightarrow{PA_1}$.

Problem 2. A 2 × 3 rectangle has vertices as (0,0), (2,0), (0,3), and (2,3). It rotates 90° clockwise about the point (2,0). It then rotates 90° clockwise about the point (5,0), then 90° clockwise about the point (7,0), and finally, 90° clockwise about the point (10,0). (The side originally on the x-axis is now back on the x-axis.) Find the area of the region above the x-axis and below the curve traced out by the point whose initial position is (1,1).

Problem 3. Given a point (a, b) with 0 < b < a, determine the minimum perimeter of a triangle with one vertex at (a, b), one on the *x*-axis, and one on the line y = x. You may assume that a triangle of minimum perimeter exists.

Problem 4. Let P be a given (non-degenerate) polyhedron. Prove that there is a constant c(P) > 0 with the following property: If a collection of n balls whose volumes sum to V contains the entire surface of P, then $n > c(P)/V^2$.