Name:

Start Time: \qquad

End Time: \qquad

Problem 1. Suppose f and g are non-constant, differentiable, real-valued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for each pair of real numbers x and y,

$$
\begin{aligned}
& f(x+y)=f(x) f(y)-g(x) g(y), \\
& g(x+y)=f(x) g(y)+g(x) f(y) .
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all x.

Problem 2. Solve the equations

$$
\frac{d y}{d x}=z(y+z)^{n}, \frac{d z}{d x}=y(y+z)^{n},
$$

given the initial conditions $y=1$ and $z=0$ when $x=0$.

Problem 3. Suppose that the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous partial derivatives and satisfies the equation

$$
h(x, y)=a \frac{\partial h}{\partial x}(x, y)+b \frac{\partial h}{\partial y}(x, y)
$$

for some constants a, b. Prove that if there is a constant M such that $|h(x, y)| \leq M$ for all $(x, y) \in \mathbb{R}^{2}$, then h is identically zero.

Problem 4. Let f be a twice-differentiable real-valued function satisfying

$$
f(x)+f^{\prime \prime}(x)=-x g(x) f^{\prime}(x),
$$

where $g(x) \geq 0$ for all real x. Prove that $|f(x)|$ is bounded.

Problem 1. Suppose f and g are non-constant, differentiable, real-valued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for each pair of real numbers x and y,

$$
\begin{aligned}
f(x+y) & =f(x) f(y)-g(x) g(y), \\
g(x+y) & =f(x) g(y)+g(x) f(y)
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all x.

Problem 2. Solve the equations

$$
\frac{d y}{d x}=z(y+z)^{n}, \quad \frac{d z}{d x}=y(y+z)^{n}
$$

given the initial conditions $y=1$ and $z=0$ when $x=0$.

Problem 3. Suppose that the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous partial derivatives and satisfies the equation

$$
h(x, y)=a \frac{\partial h}{\partial x}(x, y)+b \frac{\partial h}{\partial y}(x, y)
$$

for some constants a, b. Prove that if there is a constant M such that $|h(x, y)| \leq M$ for all $(x, y) \in \mathbb{R}^{2}$, then h is identically zero.

Problem 4. Let f be a twice-differentiable real-valued function satisfying

$$
f(x)+f^{\prime \prime}(x)=-x g(x) f^{\prime}(x),
$$

where $g(x) \geq 0$ for all real x. Prove that $|f(x)|$ is bounded.

