Name:

\qquad
Start Time: \qquad
End Time: \qquad

Problem 1. A dart, thrown at random, hits a square target. Assuming that any two parts of the target of equal area are equally likely to be hit, find the probability that the point hit is nearer to the center than to any edge. Express your answer in the form $\frac{a \sqrt{b}+c}{d}$, where a, b, c, d are integers.

Problem 2. Shanille O'Keal shoots free throws on a basketball court. She hits the first and misses the second, and thereafter the probability that she hits the next shot is equal to the proportion of shots she has hit so far. What is the probability she hits exactly 50 of her first 100 shots?

Problem 3. Let k be a positive integer. Suppose that the integers $1,2,3, \ldots, 3 k+1$ are written down in random order. What is the probability that at no time during this process, the sum of the integers that have been written up to that time is a positive integer divisible by 3 ? Your answer should be in closed form, but may include factorials.

Problem 4. Two real numbers x and y are chosen at random in the interval $(0,1)$ with respect to the uniform distribution. What is the probability that the closest integer to x / y is even? Express the answer in the form $r+s \pi$, where r and s are rational numbers.

Problem 1. A dart, thrown at random, hits a square target. Assuming that any two parts of the target of equal area are equally likely to be hit, find the probability that the point hit is nearer to the center than to any edge. Express your answer in the form $\frac{a \sqrt{b}+c}{d}$, where a, b, c, d are integers.

Problem 2. Shanille O'Keal shoots free throws on a basketball court. She hits the first and misses the second, and thereafter the probability that she hits the next shot is equal to the proportion of shots she has hit so far. What is the probability she hits exactly 50 of her first 100 shots?

Problem 3. Let k be a positive integer. Suppose that the integers $1,2,3, \ldots, 3 k+1$ are written down in random order. What is the probability that at no time during this process, the sum of the integers that have been written up to that time is a positive integer divisible by 3 ? Your answer should be in closed form, but may include factorials.

Problem 4. Two real numbers x and y are chosen at random in the interval $(0,1)$ with respect to the uniform distribution. What is the probability that the closest integer to x / y is even? Express the answer in the form $r+s \pi$, where r and s are rational numbers.

