

INTRODUCTION TO ABSTRACT MATHEMATICS FALL 2018

Assignment 10.1/2 Due November 7

Exercise 1. Prove that $|\mathbb{Z}| = |\mathbb{N}|$.

Exercise 2. Let A be a set.

- **a.** Prove that if $A \subset \mathbb{N}$ is infinite, $|A| = |\mathbb{N}|$.
- **b.** Prove the following weak version of the Schroeder-Bernstein Theorem. If $|A| \leq |\mathbb{N}| \leq |A|$, then $|A| = |\mathbb{N}|$.

Exercise 3.

- **a.** Show that $|(-1,1)| = |\mathbb{R}|$. [Suggestion: Use an example from class.]
- **b.** Prove that the map $x \mapsto x 1/x$ provides a bijection between $(0, \infty)$ and \mathbb{R} .
- **c.** Let $a, b, c, d \in \mathbb{R}$. If a < b and c < d, find a bijection from (a, b) to (c, d).
- **d.** Conclude that all open intervals in \mathbb{R} (finite, infinite, or half-infinite) have the same cardinality.

Exercise 4. Let S be an infinite set and $x \in S$.

- **a.** Show that there exists an injection $f : \mathbb{N} \to S$ so that f(1) = x. [Suggestion: By one of our characterizations of infinite sets, there is a surjection $S \to \mathbb{N}$. Compose with an appropriately chosen bijection $\mathbb{N} \to \mathbb{N}$ to arrange it so that $x \mapsto 1$. Quote a theorem about surjections to complete the proof.]
- **b.** Use part **a** to show that $|S \setminus \{x\}| = |S|$.
- **c.** Use part **b** to prove that if $x_1, x_2, \ldots, x_n \in S$, then $|S \setminus \{x_1, x_2, \ldots, x_n\}| = |S|$. [Suggestion: Remove one element of S at a time. Given that this changes the set S at each stage, how do you know **b** still holds?]
- **d.** Prove that |[0,1]| = |(0,1]| = |[0,1)| = |(0,1)|. The proof of this counterintuitive result eluded me as an undergraduate.

Exercise 5. Let S be a set, $\mathcal{P}^0(S) = S$, and for $n \ge 1$ set

$$\mathcal{P}^n(S) = \mathcal{P}(\mathcal{P}^{n-1}(S)).$$

Prove that

$$|\mathcal{P}^m(S)| < \left| \bigcup_{n \in \mathbb{N}_0} \mathcal{P}^n(S) \right|$$

for all $m \in \mathbb{N}_0$. Interpret this result in the case that $S = \mathbb{N}$. [Suggestion: Show directly that \leq holds, then argue by contradiction to show that equality does not.]