Introduction to Abstract Mathematics FALL 2018

Assignment 10.1/2
Due November 7

Exercise 1. Prove that $|\mathbb{Z}|=|\mathbb{N}|$.

Exercise 2. Let A be a set.
a. Prove that if $A \subset \mathbb{N}$ is infinite, $|A|=|\mathbb{N}|$.
b. Prove the following weak version of the Schroeder-Bernstein Theorem. If $|A| \leq|\mathbb{N}| \leq$ $|A|$, then $|A|=|\mathbb{N}|$.

Exercise 3.

a. Show that $|(-1,1)|=|\mathbb{R}|$. [Suggestion: Use an example from class.]
b. Prove that the map $x \mapsto x-1 / x$ provides a bijection between $(0, \infty)$ and \mathbb{R}.
c. Let $a, b, c, d \in \mathbb{R}$. If $a<b$ and $c<d$, find a bijection from (a, b) to (c, d).
d. Conclude that all open intervals in \mathbb{R} (finite, infinite, or half-infinite) have the same cardinality.

Exercise 4. Let S be an infinite set and $x \in S$.
a. Show that there exists an injection $f: \mathbb{N} \rightarrow S$ so that $f(1)=x$. [Suggestion: By one of our characterizations of infinite sets, there is a surjection $S \rightarrow \mathbb{N}$. Compose with an appropriately chosen bijection $\mathbb{N} \rightarrow \mathbb{N}$ to arrange it so that $x \mapsto 1$. Quote a theorem about surjections to complete the proof.]
b. Use part a to show that $|S \backslash\{x\}|=|S|$.
c. Use part b to prove that if $x_{1}, x_{2}, \ldots, x_{n} \in S$, then $\left|S \backslash\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right|=|S|$. [Suggestion: Remove one element of S at a time. Given that this changes the set S at each stage, how do you know b still holds?]
d. Prove that $|[0,1]|=|(0,1]|=|[0,1)|=|(0,1)|$. The proof of this counterintuitive result eluded me as an undergraduate.

Exercise 5. Let S be a set, $\mathcal{P}^{0}(S)=S$, and for $n \geq 1$ set

$$
\mathcal{P}^{n}(S)=\mathcal{P}\left(\mathcal{P}^{n-1}(S)\right) .
$$

Prove that

$$
\left|\mathcal{P}^{m}(S)\right|<\left|\bigcup_{n \in \mathbb{N}_{0}} \mathcal{P}^{n}(S)\right|
$$

for all $m \in \mathbb{N}_{0}$. Interpret this result in the case that $S=\mathbb{N}$. [Suggestion: Show directly that \leq holds, then argue by contradiction to show that equality does not.]

