

Introduction to Abstract Mathematics
Assignment 11.1 FALL 2018

Exercise 1. Recall that $\{0,1\}^{\mathbb{N}}$ is the set of all binary sequences.
a. For $n \in \mathbb{N}$, let A_{n} be the subset of $\{0,1\}^{\mathbb{N}}$ whose rightmost nonzero entry is in the nth position. Show that A_{n} is finite.
b. For $n \in \mathbb{N}$, let B_{n} be the subset of $\{0,1\}^{\mathbb{N}}$ whose rightmost zero entry is in the nth position. Show that B_{n} is finite.
c. Use parts a and \mathbf{c} to show that the subset C of $\{0,1\}^{\mathbb{N}}$ containing all sequences that terminate in either and infinite string of 0 s or an infinite string of 1 s is countable. [Suggestion: Remember that a countable union of countable sets is countable.]

