

## INTRODUCTION TO ABSTRACT MATHEMATICS

**Exercise 1.** Let  $\equiv_{\mathbb{Z}} = \{(x, y) \in \mathbb{R}^2 | x - y \in \mathbb{Z}\}$ . Prove that  $\equiv_{\mathbb{Z}}$  is an equivalence relation on  $\mathbb{R}$ .

**Exercise 2.** Let A and B be sets,  $f : A \to B$  a function, and  $\equiv_f = \{(x, y) \in A^2 | f(x) = f(y)\}$ . Prove that  $\equiv_f$  is an equivalence relation on A.

**Exercise 3.** Let  $\sim$  be a relation on a set A that is symmetric and transitive. What is wrong with the following "proof" that  $\sim$  must automatically be reflexive as well?

*Proof.* If  $a \sim b$ , then by symmetry we also have  $b \sim a$ . Because  $a \sim b$  and  $b \sim a$ , transitivity implies that  $a \sim a$ . Therefore  $\sim$  is reflexive.