Exercise 1. Let $\equiv_{\mathbb{Z}}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-y \in \mathbb{Z}\right\}$. Prove that $\equiv_{\mathbb{Z}}$ is an equivalence relation on \mathbb{R}.

Exercise 2. Let A and B be sets, $f: A \rightarrow B$ a function, and $\equiv_{f}=\left\{(x, y) \in A^{2} \mid f(x)=\right.$ $f(y)\}$. Prove that \equiv_{f} is an equivalence relation on A.

Exercise 3. Let \sim be a relation on a set A that is symmetric and transitive. What is wrong with the following "proof" that ~ must automatically be reflexive as well?

Proof. If $a \sim b$, then by symmetry we also have $b \sim a$. Because $a \sim b$ and $b \sim a$, transitivity implies that $a \sim a$. Therefore \sim is reflexive.

