D

Introduction to Abstract Mathematics Fall 2018

Exercise 1. Recall the equivalence relation on $A = \mathbb{R}^2 \setminus \{(0,0)\}$ defined by $P \sim Q$ if and only if there exists a nonzero $\lambda \in \mathbb{R}$ so that $P = \lambda Q$. Denote the equivalence class of (a, b) by [a : b]. Show that

$$A/\sim = \{ [x:1] \, | \, x \in \mathbb{R} \} \cup \{ [1:0] \}.$$

Exercise 2. Let A and \sim be as in the previous exercise, and set $\mathbb{P}^1(\mathbb{R}) = \mathbb{R} \cup \{\infty\}$. Prove that the function $f: A/\sim \to \mathbb{P}^1(\mathbb{R})$ given by

$$f([a:b]) = \begin{cases} a/b & \text{if } b \neq 0, \\ \infty & \text{otherwise} \end{cases}$$

is a well-defined bijection.

Exercise 3. Let x be a nonzero real number. Prove that if x + 1/x is an integer, then $x^n + 1/x^n$ is an integer for all $n \in \mathbb{N}$.

Assignment 12.1