

Introduction to Abstract Mathematics
Assignment 12.1 FALL 2018

Exercise 1. Recall the equivalence relation on $A=\mathbb{R}^{2} \backslash\{(0,0)\}$ defined by $P \sim Q$ if and only if there exists a nonzero $\lambda \in \mathbb{R}$ so that $P=\lambda Q$. Denote the equivalence class of (a, b) by $[a: b]$. Show that

$$
A / \sim=\{[x: 1] \mid x \in \mathbb{R}\} \cup\{[1: 0]\}
$$

Exercise 2. Let A and \sim be as in the previous exercise, and set $\mathbb{P}^{1}(\mathbb{R})=\mathbb{R} \cup\{\infty\}$. Prove that the function $f: A / \sim \rightarrow \mathbb{P}^{1}(\mathbb{R})$ given by

$$
f([a: b])= \begin{cases}a / b & \text { if } b \neq 0 \\ \infty & \text { otherwise }\end{cases}
$$

is a well-defined bijection.

Exercise 3. Let x be a nonzero real number. Prove that if $x+1 / x$ is an integer, then $x^{n}+1 / x^{n}$ is an integer for all $n \in \mathbb{N}$.

