Introduction to Abstract Mathematics
AsSIGNMENT 12.2 FALL 2018

Exercise 1. The FIbonacci numbers are the terms in the sequence defined as follows:

$$
F_{0}=0, \quad F_{1}=1, \quad F_{n+2}=F_{n+1}+F_{n} \quad \text { for } n \geq 0
$$

Conjecture and prove a formula for $F_{0}+F_{1}+F_{2}+\cdots+F_{n}$.

Exercise 2. For $n \in \mathbb{N}$, the nth harmonic number is $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Prove that for all $n \geq 0$, $H_{2^{n}} \geq 1+\frac{n}{2}$.

Exercise 3. Let $n \in \mathbb{N}, n \geq 2$. Use induction to prove that if $A_{1}, A_{2}, \ldots, A_{n}$ are countable, then the set

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i} \text { for all } i\right\}
$$

is countable.

Exercise 4. What's wrong with the following "proof" that all M\&Ms have the same color?
Proof. It suffices to prove that all the M\&Ms in any finite set S have the same color. For this we induct on $n=|S|$. When $n=1$ the result is clear, since one M\&M has only a single color. Now let $n \in \mathbb{N}$ and suppose the result is true for all sets of $n \mathrm{M} \& \mathrm{Ms}$. Let $S=\left\{m_{1}, m_{2}, \ldots, m_{n+1}\right\}$ be a set of $n+1$ M\&Ms. Because they each only have n M\&Ms, the inductive hypothesis applies to the sets $S_{1}=\left\{m_{1}, \ldots, m_{n}\right\}$ and $S_{2}=\left\{m_{2}, \ldots, m_{n}\right\}$. That is, the M\&Ms in S_{1} all have a common color, and the M\&Ms in S_{2} all have a common color. Since the two sets share the element m_{n}, the two common colors must actually be the same. Hence, all the elements in $S=S_{1} \cup S_{2}$ have a single color. The result now follows by induction.

