

Introduction to Abstract Mathematics
Assignment 12.3 FALL 2018

Exercise 1. Define a sequence $\left\{a_{n}\right\}$ by setting $a_{0}=2, a_{1}=3, a_{2}=13$, and $a_{n+1}=$ $3 a_{n}-4 a_{n-2}$ for $n \geq 2$. Prove that

$$
a_{n}=(n+1) 2^{n}+(-1)^{n} .
$$

Exercise 2. Call a positive integer n a $M c N u g g e t$ number if there exist $a_{1}, a_{2}, a_{3} \in \mathbb{N}_{0}$ so that $n=6 a_{1}+9 a_{2}+20 a_{3}$. Prove that 43 is the smallest non-McNugget number.

Exercise 3. In the game of Nim, two players take turns removing matches from two piles. At each turn, a player removes some (non-zero) number of matches from one of the piles. The player who removes the last match wins. Prove that if the piles of matches initially have the same size $n \in \mathbb{N}$, then the second player can always win.

