

Introduction to Abstract Mathematics Fall 2018

Assignment 2.1 Due September 5

Exercise 1. Let \otimes denote the *exclusive or* connective, so that $P \otimes Q$ means "P or Q, but not both."

- **a.** Make a truth table for $P \otimes Q$.
- **b.** Find a formula using only the connectives \land , \lor , and \neg that is equivalent to $P \otimes Q$. Justify your answer with a truth table.

Exercise 2. Verify the following logical equivalences.

- **a.** $P \cong P \land P \cong P \lor P$
- **b.** If C is a contradiction, then $P \wedge C$ is a contradiction, while $P \vee C \cong P$.
- **c.** If T is a tautology, then $P \wedge T \cong P$, while $P \vee T$ is a tautology.

Exercise 3. Use established logical equivalences to verify the following.

a. $(P \Rightarrow R) \land (Q \Rightarrow R) \cong (P \lor Q) \Rightarrow R$ **b.** $(P \Rightarrow R) \lor (Q \Rightarrow R) \cong (P \land Q) \Rightarrow R$ **c.** $(P \Rightarrow Q) \land (Q \Rightarrow R) \cong (P \Rightarrow R) \land [(P \Leftrightarrow Q) \lor (R \Leftrightarrow Q)]$ **d.** $(P \Rightarrow Q) \lor (Q \Rightarrow R)$ is a tautology.

Exercise 4. Find a formula involving only the connectives \land , \lor , and \neg that has the following truth table:

Р	Q	???
Т	Т	Т
Т	F	Т
\mathbf{F}	Т	\mathbf{F}
\mathbf{F}	F	Т