

Introduction to Abstract Mathematics Fall 2018

Assignment 3.1 Due September 12

Exercise 1. Prove that if $n \in \mathbb{Z}$ is even, then n^2 is even.

Exercise 2. Let $a, b \in \mathbb{R}$.

- **a.** Prove that if 0 < a < b, then $a^2 < b^2$.
- **b.** Prove that if a < b, then $a < \frac{a+b}{2} < b$.

Exercise 3. Consider the following theorem.

Theorem 1. Suppose x is a real number and $x \neq 4$. If $\frac{2x-5}{x-4} = 3$, then x = 7.

a. What's wrong with the following proof of the theorem?

Proof. Suppose x = 7. Then $\frac{2x-5}{x-4} = \frac{2(7)-5}{7-4} = \frac{9}{3} = 3$. Therefore if $\frac{2x-5}{x-4} = 3$, then x = 7.

- **b.** Give a correct proof of the theorem.
- c. What statement does the proof in part a actually prove?

Exercise 4. Show that an implication is logically equivalent to its contrapositive, but not equivalent to its converse.