Introduction to Abstract Mathematics
Assignment 3.1
FALL 2018

Exercise 1. Prove that if $n \in \mathbb{Z}$ is even, then n^{2} is even.

Exercise 2. Let $a, b \in \mathbb{R}$.
a. Prove that if $0<a<b$, then $a^{2}<b^{2}$.
b. Prove that if $a<b$, then $a<\frac{a+b}{2}<b$.

Exercise 3. Consider the following theorem.
Theorem 1. Suppose x is a real number and $x \neq 4$. If $\frac{2 x-5}{x-4}=3$, then $x=7$.
a. What's wrong with the following proof of the theorem?

Proof. Suppose $x=7$. Then $\frac{2 x-5}{x-4}=\frac{2(7)-5}{7-4}=\frac{9}{3}=3$. Therefore if $\frac{2 x-5}{x-4}=3$, then $x=7$.
b. Give a correct proof of the theorem.
c. What statement does the proof in part a actually prove?

Exercise 4. Show that an implication is logically equivalent to its contrapositive, but not equivalent to its converse.

